Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Физические исследования и численное моделирование воздействия мощного потока радиоизлучения на нижнюю ионосферу. Часть 1. Краткий обзор состояния вопроса и постановка задачи
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 619-637В первой части статьи сформулирована общая цель работы, состоящая в численном исследовании химических, ионизационных, оптических и температурных характеристик нижней ионосферы, возмущенной мощным потоком радиоизлучения. Дан краткий обзор основных экспериментальных и теоретических исследований физических явлений в ионосфере при воздействии на нее потока радиоволн коротковолнового диапазона, генерируемого нагревными стендами различной мощности. Показана определяющая роль $D$-области ионосферы в поглощении энергии радиолуча. Выполнен подробный анализ кинетических процессов в возмущенной $D$-области ионосферы, которая является наиболее сложной в кинетическом отношении. Показано, что для полного описания ионизационно-химических и оптических характеристик возмущенной области необходимо учитывать более 70 компонент, которые по своему основному физическому содержанию удобно разделить на пять групп. Представлена кинетическая модель для описания изменения концентраций взаимодействующих между собой компонентов (общее число реакций — 259). Система кинетических уравнений решалась с помощью специально адаптированного к такого рода задачам полунеявного численного метода. На основе предложенной структуры разработан программный комплекс, в котором схема алгоритма допускала менять как содержимое отдельных блоков программы, так и их количество, что позволило проводить подробные численные исследования отдельных процессов в поведении параметров возмущенной области. Полный численный алгоритм основан на двухтемпературном приближении, в котором главное внимание уделялось расчету электронной температуры, так как на ее поведение определяющее влияние оказывают неупругие кинетические процессы с участием электронов. Постановка задачи носит общий характер и позволяет рассчитывать параметры возмущенной ионосферы в широком диапазоне мощностей и частот радиоизлучения. На основе разработанной численной методики можно исследовать широкий круг явлений как в естественной, так и в возмущенной ионосфере.
Ключевые слова: активные эксперименты, нижняя ионосфера, КВ-радиоволны, нагревные стенды, численное моделирование, температура, кинетика. -
Стехиометрия метаболических путей в динамике клеточных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475Просмотров за год: 5. Цитирований: 1 (РИНЦ).Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342Просмотров за год: 34.В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
-
Моделирование одномерных нелинейных пульсовых волн в эластичных сосудах на основе решеточных уравнений Больцмана
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 707-722Просмотров за год: 2.В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.
В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.
В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.
-
Применение модели кинетического типа для изучения пространственного распространения COVID-19
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.
-
Исследование усредненной модели окислительной регенерации закоксованного катализатора
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.
Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.
В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.
В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.
В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.
-
Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 159-176Просмотров за год: 4. Цитирований: 3 (РИНЦ).В настоящей работе представлены результаты кинетического моделирования индукции и репарации двунитевых разрывов ДНК, а также формирования скоплений (фокусов) фосфорилированного гистона H2AX ($\gamma$-H2AX) и белка Rad 51 в местах образования двунитевых разрывов, индуцированных воздействием редкоионизирующего излучения с различной мощностью и продолжительностью, в первичных фибробластах человека. Модель описывает основные механизмы репарации двунитевых разрывов: НГСК (негомологичное соединение концов) и ГР (гомологическая рекомбинация) и учитывает взаимодействия ряда белков (ДНК-ПКкс, ATM, Ku70/80, XRCC1, XRCC4, Rad51, ФРА и др.), участвующих в репарации двунитевых разрывов ДНК, на основе закона действующих масс и кинетики Михаэлиса-Ментен. Для тренировки и подтверждения статистической достоверности модели были использованы литературные данные по кинетике репарации двунитевых разрывов, а также данные по кинетике формирования и деградации фокусов белков репарации $\gamma$-H2AX и Rad51 в местах репарации двунитевых разрывов ДНК после облучения с различной мощностью дозы, полученные ранее нашим коллективом.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
-
Анализ скорости электронного транспорта через фотосинтетический цитохромный $b_6 f$ -комплекс
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 997-1022Рассматривается основанный на методах линейной алгебры подход к анализу скорости электронного транспорта через цитохромный $b_6 f$-комплекс. В предложенном подходе зависимость квазистационарного потока электронов через комплекс от степени восстановленности пулов мобильных переносчиков электрона выступает в качестве функции отклика, характеризующей этот процесс. Разработано программное обеспечение на языке программирования Python, позволяющее построить основное кинетическое уравнение для комплекса по схеме элементарных реакций и вычислить квазистационарные скорости электронного транспорта через комплекс и динамику их изменения в ходе переходного процесса. Вычисления проводятся в многопоточном режиме, что позволяет эффективно использовать ресурсы современных вычислительных систем и за сравнительно небольшое время получать данные о функционировании комплекса в широком диапазоне параметров. Предложенный подход может быть легко адаптирован для анализа электронного транспорта в других компонентах фотосинтетической и дыхательной электрон-транспортной цепи, а также других процессов в сложных мультиферментных комплексах, содержащих несколько реакционных центров. Для параметризации модели цитохромного $b_6 f$-комплекса использованы данные криоэлектронной микроскопии и окислительно-восстановительного титрования. Получены зависимости квазистационарной скорости восстановления пластоцианина и окисления пластохинона от степени восстановленности пулов мобильных переносчиков электрона и проанализирована динамика изменения скорости в ответ на изменение редокс-состояния пула пластохинонов. Результаты моделирования находятся в хорошем согласовании с имеющимися экспериментальными данными.
Ключевые слова: фотосинтез, электронный транспорт, основное кинетическое уравнение, функция отклика, цитохромный комплекс. -
Описание быстрых процессов вторжения на основе кинетической модели
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 829-838В последние годы моделирование социальных, социо-биологических и исторических процессов получило большое развитие. В настоящей работе на основе кинетического подхода моделируются исторические процессы: агрессивное вторжение нацистской Германии в Польшу, Францию и СССР. Показано, что изучаемая система нелинейных уравнений полностью интегрируема: общее решение строится в виде квадратур. Вторжение (блицкриг) описывается краевой задачей Коши для двухэлементной кинетической модели с однородными по двум частям пространства начальными условиями. Решение данной задачи имеет вид бегущей волны, а скорость смещения линии фронта зависит от отношения начальных концентраций войск. Полученные оценки скорости распространения фронта согласуются с историческими фактами.
Ключевые слова: кинетическая теория, модели агрессии.Просмотров за год: 4. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"