Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Автономная нетерова краевая задача в частном критическом случае
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 337-351Просмотров за год: 4. Цитирований: 1 (РИНЦ).Найдены необходимые и достаточные условия существования решений нелинейной автономной краевой задачи в частном критическом случае. Характерной особенностью поставленной задачи является невозможность непосредственного применения традиционной схемы исследования и построения решений критических краевых задач, созданной в работах И.Г. Малкина, А.М. Самойленко, Е.А. Гребеникова, Ю.А. Рябова и А.А. Бойчука. Для построения решений нелинейной нетеровой краевой задачи в частном критическом случае предложена итерационная схема, построенная по схеме метода наименьших квадратов. Эффективность техники продемонстрирована на примере анализа периодической задачи для уравнения типа Хилла.
- Просмотров за год: 1.
- Просмотров за год: 6.
- Просмотров за год: 18.
-
Модифицированная двухшаговая итерационная техника для построения функций Матье
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 31-43Просмотров за год: 1.Предложена модифицированная двухшаговая итерационная техника, построенная по схеме метода наименьших квадратов, определяющая последовательные приближения к периодическим решениям уравнения Матье и его собственным функциям, значительно превосходящие по точности ранее известные результаты.
-
Неявный итерационный полинейный рекуррентный метод в применении к решению задач динамики несжимаемой вязкой жидкости
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 35-50Просмотров за год: 3. Цитирований: 3 (РИНЦ).В работе рассматриваются результаты применения неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений, возникающих при численном моделировании динамики несжимаемой вязкой жидкости. Исследование проводится на примере решения задачи о стационарном течении в плоской каверне с подвижной крышкой, сформулированной в естественных переменных ($u, \,v, \,p$) при больших значениях чисел Re (до 20 000) и сеточных разрешений (до 2049×2049). Демонстрируется высокая эффективность метода при расчете полей поправки давления. Анализируются проблемы решения задачи при больших числах Re.
-
О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.
В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.
Ключевые слова: система линейных алгебраических уравнений, итерационный метод решения, сходимость метода.Просмотров за год: 15. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"