Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'задача для большего числа':
Найдено статей: 77
  1. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  2. Калачин С.В.
    Нечеткое моделирование восприимчивости человека к паническим ситуациям
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218

    Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.

    В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.

    Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.

    Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.

    В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.

  3. Аксёнов А.А., Калугина М.Д., Лобанов А.И., Каширин В.С.
    Численное моделирование течения жидкости в насосе для перекачки крови в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1025-1038

    В программном комплексе FlowVision проведено численное моделирование течения жидкости в насосе для перекачки крови. Данная тестовая задача, предоставленная Центром устройств и радиологического здоровья Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США, предусматривала рассмотрение течения жидкости в соответствии с несколькими расчетными режимами. При этом для каждого расчетного случая задавалось определенное значение расхода жидкости и скорости вращения ротора. Необходимые для расчетов данные в виде точной геометрии, условий потока и характеристик жидкости были предоставлены всем участникам исследования, использующим для моделирования различные программные комплексы. Во FlowVision численное моделирование проводилось для шести режимов с ньютоновской жидкостью и стандартной моделью турбулентности $k-\varepsilon$, дополнительно были проведены расчеты пятого режима с моделью турбулентности $k-\omega$ SST и с использованием реологической модели жидкости Каро. На первом этапе численного моделирования была исследована сходимость по сетке, на основании которой выбрана итоговая сетка с числом ячеек порядка 6 миллионов. В связи с большим количеством ячеек для ускорения исследования часть расчетов проводилась на кластере «Ломоносов-2». В результате численного моделирования были получены и проанализированы значения перепада давления между входом и выходом насоса, скорости между лопатками ротора и в области диффузора, а также проведена визуализация распределения скорости в определенных сечениях. Для всех расчетных режимов осуществлялось сравнение перепада давления, полученного численно, с экспериментальными данными, а для пятого расчетного режима также производилось сравнение с экспериментом по распределению скорости между лопатками ротора и в области диффузора. Анализ данных показал хорошее соответствие результатов расчетов во FlowVision с результатами эксперимента и численного моделирования в других программных комплексах. Полученные во FlowVision результаты решения теста от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США позволяют говорить о том, что данный программный комплекс может быть использован для решения широкого спектра задач гемодинамики.

  4. Данилов Г.В., Жуков В.В., Куликов А.С., Макашова Е.С., Митин Н.А., Орлов Ю.Н.
    Сравнительный анализ статистических методов классификации научных публикаций в области медицины
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 921-933

    В работе проведено сравнение различных методов машинной классификации научных текстов по тематическим разделам на примере публикаций в профильных медицинских журналах, выпускаемых издательством Springer. Исследовался корпус текстов по пяти разделам: фармакология/токсикология, кардиология, иммунология, неврология и онкология. Рассматривались как методы поверхностной классификации, основанные на анализе аннотаций и ключевых слов, так и методы классификации на основе обработки собственно текстов. Были применены методы байесовской классификации, опорных векторов и эталонных буквосочетаний. Показано, что наилучшую точность имеет метод классификации на основе создания библиотеки эталонов буквенных триграмм, отвечающих текстам определенной тематики, а семантические методы уступают ему по точности. Выяснилось, что применительно к рассматриваемому корпусу текстов байесовский метод дает ошибку порядка 20 %, метод опорных векторов имеет ошибку порядка 10 %, а метод близости распределения текста к трехбуквенному эталону тематики дает ошибку порядка 5 %, что позволяет ранжировать эти методы для использования искусственного интеллекта в задачах классификации текстов по отраслевым специальностям. Существенно, что при анализе аннотаций метод опорных векторов дает такую же точность, что и при анализе полных текстов, что важно для сокращения числа операций для больших корпусов текстов.

  5. Ирхин И.А., Булатов В.Г., Воронцов К.В.
    Аддитивная регуляризация тематических моделей с быстрой векторизацией текста
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1515-1528

    Задача вероятностного тематического моделирования заключается в том, чтобы по заданной коллекции текстовых документов найти две матрицы: матрицу условных вероятностей тем в документах и матрицу условных вероятностей слов в темах. Каждый документ представляется в виде мультимножества слов, то есть предполагается, что для выявления тематики документа не важен порядок слов в нем, а важна только их частота. При таком предположении задача сводится к вычислению низкорангового неотрицательного матричного разложения, наилучшего по критерию максимума правдоподобия. Данная задача имеет в общем случае бесконечное множество решений, то есть является некорректно поставленной. Для регуляризации ее решения к логарифму правдоподобия добавляется взвешенная сумма оптимизационных критериев, с помощью которых формализуются дополнительные требования к модели. При моделировании больших текстовых коллекций хранение первой матрицы представляется нецелесообразным, поскольку ее размер пропорционален числу документов в коллекции. В то же время тематические векторные представления документов необходимы для решения многих задач текстовой аналитики — информационного поиска, кластеризации, классификации, суммаризации текстов. На практике тематический вектор вычисляется для каждого документа по необходимости, что может потребовать десятков итераций по всем словам документа. В данной работе предлагается способ быстрого вычисления тематического вектора для произвольного текста, требующий лишь одной итерации, то есть однократного прохода по всем словам документа. Для этого в модель вводится дополнительное ограничение в виде уравнения, позволяющего вычислять первую матрицу через вторую за линейное время. Хотя формально данное ограничение не является оптимизационным критерием, фактически оно выполняет роль регуляризатора и может применяться в сочетании с другими критериями в рамках теории аддитивной регуляризации тематических моделей ARTM. Эксперименты на трех свободно доступных текстовых коллекциях показали, что предложенный метод улучшает качество модели по пяти оценкам качества, характеризующим разреженность, различность, информативность и когерентность тем. Для проведения экспериментов использовались библиотеки с открытымк одомB igARTM и TopicNet.

  6. Лотарев Д.Т.
    Размещение точек Штейнера в дереве Штейнера на плоскости средствами MatLab
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 707-713

    Рассматривается способ локализации точек Штейнера средствами MatLab в задаче Штейнера с потоком на евклидовой плоскости, когда соединяемые точки лежат в вершинах четырех-, пяти- или шестиугольника. Матрица смежности считается заданной. Метод использует способ решения трехточечной задачи Штейнера, в которой дерево Штейнера связывает три точки. Представлена визуализация най- денных решений.

    Просмотров за год: 4.
  7. Богданов А.В., Мареев В.В., Степанов Э.А., Панченко М.В.
    Моделирование поведения опционов. Формулировка проблемы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 759-766

    Объектом исследований является создание алгоритма для расчета цен большого числа опционов с целью формирования безрискового портфеля. Метод базируется на обобщении подхода Блэка–Шоулза. Задача состоит в моделировании поведения всех опционов, а также инструментов их страхования. Для данной задачи характерен большой объем параллельных вычислений, которые требуется производить в режиме реального времени. Проблематика исследования: в зависимости от исходных данных используются разные подходы к решению. Существует три метода, которые могут использоваться при разных условиях: конечно-разностный метод, метод функционального интегрирования и метод, который связан с остановкой торгов на рынке. Распределенные вычисления в каждом из этих случаев организуются по- разному и требуют использования различных подходов. Сложность задачи также связана с тем, что в литературе ее математическая постановка не является корректной. Отсутствует полное описание граничных и начальных условий, а также некоторые предположения, лежащие в основе модели, не соответствуют реальным условиям рынка. Необходимо дать математически корректную постановку задачи и убрать несоответствие между предположениями модели и реальным рынком. Для этих целей необходимо расширить стандартную постановку за счет дополнительных методов и улучшить методы реализации для каждого направления решения задачи.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.