Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
-
Моделирование пространственно-временной миграции близкородственных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения.Просмотров за год: 6. Цитирований: 9 (РИНЦ). -
Влияние диффузии и конвекции на динамику хемостата
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 121-129В работе рассматривается популяционная динамика, описываемая модифицированной моделью хемостата, в которую включены диффузия, хемотаксис и нелокальные конкурентные потери. Для учета воздействия внешнего окружения экосистемы на популяцию, при построении численных решений в систему уравнений модели включались случайные параметры. С помощью компьютерного моделирования выявлено три динамических режима, зависящих от значений параметров системы: переход от начального состояния к пространственно-однородному стационарному состоянию, к пространственно-неоднородному распределению популяционной концентрации и к элиминации популяционной концентрации.
Ключевые слова: хемостат, диффузия, конвекция, популяционная динамика, нелокальные конкурентные потери.Просмотров за год: 1. -
Модельный способ оценки содержания хлорофилла в море на основании спутниковой информации
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 473-482Просмотров за год: 5. Цитирований: 2 (РИНЦ).На основе математическоймо дели динамики биомасс фитопланктона построен способ оценки содержания хлорофилла в районе моря с учетом его распределения по глубине. Модель построена на основе уравнения «реакция-диффузия», учитывает основные влияющие факторы: минеральное питание, освещенность и температуру. Используется спутниковая информация о поверхностном слое моря. Приведен пример расчетов для залива Петра Великого (Японское море).
-
Моделирование структурообразования в титановом сплаве ВТ6 при изотермической ковке в программном комплексе Deform
Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 975-982В статье приводятся результаты моделирования эволюции структуры при изотермической деформации сплава ВТ6 в дуплексном состоянии микроструктуры. С целью расчета процессов рекристаллизации, проходящих во вторичной α-фазе, была разработана модель рекристаллизации, основанная на дислокационном подходе к образованию зародышей рекристаллизации и последующего их роста. Процесс глобуляризации пластинчатой α-фазы был рассчитан при допущении о диффузионно-контролируемой миграции границ β-фазы обусловленного зернограничной диффузией ванадия. Адекватность модели была подтверждена результатами эксперимента.
Ключевые слова: изотермическая деформация, эволюция структуры, рекристаллизация, глобуляризация, титановый сплав ВТ6.Просмотров за год: 7. Цитирований: 3 (РИНЦ). -
Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.
-
Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.
Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.
Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.
-
Численное моделирование экологического состояния Азовского моря с применением схем повышенного порядка точности на многопроцессорной вычислительной системе
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 151-168Просмотров за год: 4. Цитирований: 31 (РИНЦ).В статье приводятся результаты трехмерного моделирования экологического состояния мелководного водоема на примере Азовского моря с использованием схем повышенного порядка точности на многопроцессорной вычислительной системе Южного федерального университета. Для решения поставленной задачи были построены и изучены дискретные аналоги операторов конвективного и диффузионного переносов четвертого порядка точности в случае частичной заполненности ячеек расчетной области. Разработанные схемы повышенного (четвертого) порядка точности были использованы при решении задач водной экологии для моделирования пространственного распределения загрязняющих биогенных веществ, вызывающих бурный рост фитопланктона, многие виды которого являются токсичными и вредоносными. Использование схем повышенного порядка точности позволило повысить качество входных данных, а также уменьшить значение погрешности при решении модельных задач водной экологии. Были проведены численные эксперименты для задачи транспорта веществ на основе схем второго и четвертого порядков точностей, которые показали, что для задачи диффузии-конвекции удалось повысить точность в 48,7 раз. Предложен и численно реализован математический алгоритм, предназначенный для восстановления рельефа дна мелководного водоема на основе гидрографической информации (глубины водоема в отдельных точках или изолиний уровня), с помощью которого была получена карта рельефа дна Азовского моря, используемая для построения полей течений, рассчитанных на основе гидродинамической модели. Поля течений водного потока используются в работе в качестве входной информации для моделей водной экологии. Была разработана библиотека двухслойных итерационных методов, предназначенная для решения девятидиагональных сеточных уравнений, возникающих при дискретизации модельных задач изменения концентраций загрязняющих веществ, планктона и рыб на многопроцессорной вычислительной системе, что позволило повысить точность расчетных данных и дало возможность получать оперативные прогнозы изменения экологического состояния мелководного водоема в кратчайшие временные промежутки.
-
Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.
В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.
В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.
-
Модель интерференции длинных волн экономического развития
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 649-663В статье обосновывается необходимость разработки и анализа математических моделей, учитывающих взаимное влияние длинных (кондратьевских) волн экономического развития. Анализ имеющихся публикаций показывает, что на модельном уровне прямые и обратные связи между пересекающимися длинными волнами до сих пор изучены недостаточно. Как свидетельствует практика, производства текущей длинной волны могут получать дополнительный импульс к росту со стороны технологий следующей длинной волны. Технологии очередной промышленной революции часто служат улучшающими инновациями для производств, рожденных предшествующей промышленной революцией. Как следствие, новая длинная волна увеличивает амплитуду колебаний траектории предшествующей длинной волны. Такого рода результаты взаимодействия длинных волн в экономике похожи на эффекты интерференции физических волн. Взаимовлияние спадов и подъемов экономик разных стран дает еще больше оснований для сопоставления последствий этого взаимовлияния с интерференцией физических волн. В статье представлена модель развития технологической базы производства, учитывающая возможности комбинирования старых и новых технологий. Модель состоит из нескольких подмоделей. Использование отличающегося математического описания для отдельных этапов обновления технологической базы производства позволяет учесть значительные различия между последовательными фазами жизненного цикла технологий широкого применения, рассматриваемых в современной литературе в качестве технологической основы промышленных революций. Одной из таких фаз является период формирования соответствующей инфраструктуры, необходимой для интенсивной диффузии новой технологии широкого применения, для быстрого развития использующих эту технологию отраслей. По модели выполнены иллюстративные расчеты при значениях экзогенных параметров, отвечающих логике смены длинных волн. При всей условности проведенных иллюстративных расчетов конфигурация кривой, представляющей изменение фондоотдачи в моделируемом периоде, близка к конфигурации реальной траектории фондоотдачи частных основных производственных фондов экономики США в период 1982–2019 гг. Указаны факторы, которые остались за рамками представленной модели, но которые целесообразно учитывать при описании интерференции длинных волн экономического развития.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"