Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'дискретные особенности':
Найдено статей: 25
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 5-6
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  4. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  5. Веричев Н.Н., Веричев С.Н., Ерофеев В.И.
    Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.

  6. Ступицкий Е.Л., Андрущенко В.А.
    Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546

    В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.

    В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.

    В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.

  7. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

  8. Представлена физико-математическая постановка сопряженной геометрической и газодинамической задачи моделирования внутрикамерных процессов и расчета основных внутрибаллистических характеристик ракетных двигателей на твердом топливе в осесимметричном приближении. Изложены основополагающие методики и численный алгоритм решения задачи. Отслеживание горящей поверхности топлива осуществлено неявным образом с помощью метода уровней на декартовой структурированной вычислительной сетке. Для расчета параметров течения использованы двумерные уравнения газовой динамики. Ввиду несогласованности границ области с узлами вычислительной сетки, в численных расчетах учтено наличие фиктивных точек, лежащих вне рассматриваемой области, но рядом с границей. Для задания значений параметров течения в фиктивных точках применена обратная процедура Лакса – Вендроффа, заключающаяся в построении экстраполяционного полинома, который учитывает как текущее распределение параметров, так и условия на границе. Численное решение полученной системы уравнений основано на использовании WENO-схем пятого и третьего порядка для дискретной аппроксимации по пространственной координате уравнений метода уровней и газовой динамики соответственно и применении методов Рунге – Кутты, обладающих свойством уменьшения полной вариации, для решения полученных полудискретных уравнений. Изложенный численный алгоритм распараллелен с использованием технологии CUDA и в дальнейшем оптимизирован с учетом особенностей архитектуры графических процессоров.

    Программный комплекс использован при расчетах внутрибаллистических характеристик бессоплового двигателя на твердом топливе в течение основного времени работы. На основе полученных численных результатов обсуждается эффективность распараллеливания с использованием технологии CUDA и применения рассмотренных оптимизаций. Показано, что применяемая методика распараллеливания приводит к значительному ускорению по сравнению с использованием центральных процессоров. Представлены распределения основных параметров течения продуктов сгорания в различные промежутки времени. Произведено сравнение полученных результатов квазиодномерного подхода и разработанной численной методики.

  9. Новикова О.Б.
    Фрактальный сплайн как модель фрактальных функций для генерирования фрактальных сигналов
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 583-587

    В работе представлен способ получения фрактальных сигналов с помощью фрактальных сплайнов, аналогичных сигналам, генерируемыми фрактальными функциями. Обосновывается гипотеза об идентичности дискретных фрактальных функций и линейных фрактальных сплайнов. Рассмотрены особенности расчета матрицы планирования для кумулятивного фрактального сплайна, приведены примеры сгенерированных кривых.

    Просмотров за год: 2.
  10. Божко А.Н.
    Гиперграфовый подход в декомпозиции сложных технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022

    В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.