Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'динамическое моделирование':
Найдено статей: 131
  1. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  2. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

  3. Кубасова Н.А., Цатурян А.К.
    Молекулярно-динамическая оценка механических свойств фибриллярного актина
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092

    Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.

  4. Прудников В.В., Прудников П.В., Поспелов Е.А.
    Компьютерное моделирование неравновесного критического поведения трехмерной модели Изинга
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 119-129

    Осуществлено численное моделирование с применением алгоритма тепловой бани неравновесного критического поведения в трехмерной как однородной, так и структурно неупорядоченной модели Изинга. На основе анализа двухвременной зависимости автокорреляционных функций и динамической восприимчивости для систем со спиновыми концентрациями p = 1,0, = 0,8 и 0,6 были выявлены эффекты старения c аномальным замедлением релаксации системы с ростом времени ожидания. Доказано нарушение флуктуационно-диссипативной теоремы и получены значения универсального предельного флуктуационно-диссипативного отношения для рассматриваемых систем. Показано, что увеличение концентрации дефектов структуры приводит к усилению эффектов старения.

    Просмотров за год: 11.
  5. Аксёнов А.А., Жлуктов С.В., Шмелев В.В., Жестков М.Н., Рогожкин С.А., Пахолков В.В., Шепелев С.Ф.
    Разработка методики расчетного анализа теплогидравлических процессов в реакторе на быстрых нейтронах с применением кода FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 87-94

    В статье описан подход к расчетному анализу теплогидравлических процессов в реакторе на быстрых нейтронах (БН), включающий применяемые физические модели, численные схемы и упрощения реальной конструкции, принятые в расчетной модели. Рассмотрены стационарные и динамические режимы испытаний. Стационарные режимы имитировали работу реактора на номинальной мощности. Динамические режимы имитировали расхолаживание реактора через систему отвода тепла. Моделирование теплогидравлических процессов проведено в программном комплексе (ПК) FlowVision. На основе геометрической модели была построена математическая модель, описывающая течение теплоносителя в первом контуре имитатора реактора типа БН.

    Моделирование течения и теплообмена рабочего вещества в имитаторе реактора выполнено в предположении независимости плотности вещества от давления, с использованием $k–\varepsilon$ модели турбулентности, с применением модели дисперсной среды и с учетом сопряженного теплообмена. Реализованная в ПК FlowVision модель дисперсной среды позволила учесть процесс теплообмена между контурами в теплообменниках. Из-за большого количества расчетных ячеек по модели активной зоны области двух теплообменных аппаратов были заменены гидравлическими сопротивлениями и стоками тепла.

    Моделирование течения теплоносителя в ПК FlowVision позволило получить распределения температуры, скорости и давления во всей расчетной области. В результате использования модели дисперсной среды были получены распределения температуры теплоносителей по обоим контурам теплообменников. Определено изменение температуры теплоносителя вдоль двух термозондов, которые располагались в холодной и горячей камерах имитатора реактора БН. На основе сравнительного анализа численных и экспериментальных данных сделаны выводы о корректности построенной математической модели и возможности ее использования для моделирования теплогидравлических процессов, протекающих в реакторах с натриевым теплоносителем типа БН.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  6. Шокиров Ф.Ш.
    Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 773-787

    Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках (2 + 1)-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.

    Просмотров за год: 6.
  7. Грачев В.А., Найштут Ю.С.
    Релаксационные колебания и устойчивость тонких оболочек
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820

    В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.

    Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.

    Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.

  8. Олейник Е.Б., Ивашина Н.В., Шмидт Ю.Д.
    Моделирование процессов миграции населения: методы и инструменты (обзор)
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232

    Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.

    Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.

    В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.

  9. Адамовский Е.Р., Чертков В.М., Богуш Р.П.
    Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146

    Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.

  10. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.