Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.
-
Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.
Ключевые слова: динамическая система, решетка, бифуркации, осциллятор, фазовое пространство, динамический хаос, синхронизация. -
Исследование состояний равновесия второго рода уравнения Курамото–Сивашинского с однородными условиями Неймана
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 59-69Просмотров за год: 27.Рассматривается известное эволюционное уравнение математической физики, которое в современной математической литературе принято называть уравнением Курамото–Сивашинского. В данной работе это уравнение изучается в первоначальной редакции авторов работ, где оно было предложено, вместе с однородными краевыми условиями Неймана. Изучен вопрос о существовании и устойчивости локальных аттракторов, сформированных пространственно-неоднородными решениями изучаемой краевой задачи. Данный вопрос стал особенно актуален в последнее время в связи с моделированием процесса формирования наноструктур на поверхности полупроводников под воздействием потока ионов или лазерного излучения.
Изучен вопрос о существовании и устойчивости состояний равновесия второго рода двумя различными способами. В первом из них использован метод Галёркина. Второй подход основан на использовании строго обоснованных методов теории динамических систем с бесконечномерным фазовым пространством: метод интегральных многообразий, теория нормальных форм, асимптотические методы.
В работе в целом повторен подход из известной работы Д. Армбрустера, Д. Гукенхеймера, Ф.Холмса, где использован подход, основанный на применении метода Галёркина. Результаты такого анализа расширены и развиты. Использование возможностей современных компьютеров помогло существенно дополнить анализ этой задачи. В частности, найти все решения в четырех- и пятичленных аппроксимациях Галёркина, которые для изучаемой краевой задачи следует интерпретировать как состояния равновесия второго рода. Также дан анализ их устойчивости в смысле определения А. М. Ляпунова.
В данной работе проведено сравнение результатов, полученных с использованием метода Галёркина с результатами бифуркационного анализа краевой задачи на базе применения методов качественного анализа бесконечномерных динамических систем. Сравнение двух вариантов результатов показало некоторую ограниченность возможностей использования метода Галёркина.
-
Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.
-
Бегущие волныв параболической задаче с преобразованием поворота на окружности
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 705-716Оптические системы с двумерной обратной связью демонстрируют широкие возможности по исследованию процессов зарождения и развития диссипативных структур. Обратная связь позволяет воздействовать на динамику оптической системы посредством управляемого преобразования пространственных переменных, выполняемых призмами, линзами, динамическими голограммами и другими устройствами. Нелинейный интерферометр с зеркальным отражением поля в двумерной обратной связи является одной из наиболее простых оптических систем, в которых реализуется нелокальный характер взаимодействия световых полей.
Математической моделью оптических систем с двумерной обратной связью является нелинейное параболическое уравнение с преобразованием поворота пространственной переменной и условиями периодичности на окружности.
Исследуются вопросы бифуркации рождения стационарных структур типа бегущей волны, эволюции их форм при уменьшении бифуркационного параметра (коэффициента диффузии) и динамики их устойчивости при отходе от критического значения параметра бифуркации и дальнейшем его уменьшении. Впервые в качестве бифуркационного параметра был взят коэффициент диффузии.
В работе используются метод центральных многообразий и метод Галёркина. На основе метода центральных многообразий доказана теорема о существовании, форме и устойчивости решения типа бегущей волны в окрестности бифуркационного значения коэффициента диффузии. Получено представление первой бегущей волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифуркационного параметра через критическое значение. Согласно теореме о центральном многообразии первая бегущая волна рождается орбитально устойчивой.
Поскольку доказанная теорема дает возможность исследовать рожденные решения только в окрестности критического значения бифуркационного параметра, то для изучения динамики изменений решения типа бегущей волны при отходе бифуркационного параметра в область надкритичности был использован формализм метода Галёркина. В соответствии с методом центральных многообразий составлена галёркинская аппроксимация приближенных решений поставленной задачи. При уменьшении параметра бифуркации и его переходе через критическое значение нулевое решение задачи теряет устойчивость колебательным образом. В результате от нулевого решения ответвляется периодическое решение типа бегущей волны. Эта волна рождается орбитально устойчивой. При дальнейшем уменьшении параметра и его прохождении через следующее критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа рождается второе решение типа бегущей волны. Данная волна рождается неустойчивой, с индексом неустойчивости два.
Численные расчеты с помощью пакета Mathematica показали, что применение метода Галёркина приводит к качественно и количественно правильным результатам. Полученные результаты хорошо согласуются с результатами, полученными другими авторами, и могут быть использованы для постановки экспериментов по изучению явлений в оптических системах с обратной связью.
Ключевые слова: параболическая задача, бифуркация, устойчивость, бегущая волна, метод центральных многообразий, метод Галёркина.Просмотров за год: 11. Цитирований: 5 (РИНЦ). -
Моделирование термодесорбции и водородопроницаемости
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 679-703Просмотров за год: 3.В контексте проблем водородной и термоядерной энергетики ведутся интенсивные исследования свойств изотопов водорода. Математические модели позволяют уточнять физико-химические представления о взаимодействии водорода с конструкционными материалами, выделять лимитирующие факторы. Классических моделей диффузии часто недостаточно. Статья посвящена моделям и численному решению краевых задач термодесорбции и водородопроницаемости с учетом динамики нелинейных сорбционно-десорбционных процессов на поверхности и обратимого захвата атомов водорода в объеме. Алгоритмы основаны на разностных аппроксимациях. Представлены результаты компьютерного моделирования потока водорода из конструкционного материала.
-
Дискретно-элементное моделирование внедрения шара в массивную преграду
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 71-79Дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных частиц, применена к задаче внедрения металлических шаров в массивные преграды. Для описания взаимодействия между частицами использовался двухпараметрический потенциал Леннарда–Джонса. Компьютерная реализация модели осуществлена с использованием распараллеливания вычислений на графических процессорах, что позволило добиться высокого пространственно-временного разрешения. На основе сравнения результатов компьютерного моделирования с экспериментальными данными идентифицирована зависимость энергии межчастичной связи от динамической твердости материалов. Показано, что использование данного подхода позволяет достаточно точно описать процесс внедрения ударника в преграду в диапазоне скоростей взаимодействия 500–2500 м/c.
Ключевые слова: высокоскоростной удар, дискретно-элементная модель, энергия связи, численное моделирование.Просмотров за год: 5. Цитирований: 5 (РИНЦ). -
В настоящей статье изложен научный подход Дмитрия Сергеевича Чернавского к вопросам моделирования экономических процессов. Излагается история работы Дмитрия Сергеевича на экономическом направлении, представлены ее основные этапы и достижения. Одним из важнейших достижений в области экономического анализа стало предсказание группой ученых, возглавляемых Д. С. Чернавским, основных кризисов, произошедших в нашей стране за последние 20 лет, а именно дефолта 1998 года, кризиса промышленного производства второй половины 2000-х, кризиса 2008 года и последовавшей за ним рецессии. В качестве примера динамического анализа мировых макроэкономических процессов приведена модель функционирования доллара в качестве мировой валюты. На данном конкретном примере показана возможность сеньёража за счет эмиссии доллара и рассчитано «окно возможностей», которое позволяет эмитировать доллары в качестве мировой валюты без ущерба для собственной экономики.
Как пример динамического анализа экономики отдельного государства рассматривается модель развития закрытого общества (без внешних экономических связей) в однопродуктовом приближении. Модель основана на принципах рыночной экономики, то есть динамика цены определяется балансом спроса и предложения. Показано, что в общем случае состояние рыночного равновесия не единственно. Возможно несколько стационарных состояний, отличающихся уровнем производства и потребления. Рассмотрен эффект адресной денежной эмиссии в низкопродуктивном состоянии. Показано, что в зависимости от ее размера и адреса она может привести к переходу в высокопродуктивное состояние и просто вызвать инфляцию без перехода. Обсуждается связь этих результатов с кейнсианским и монетаристским подходами.
Ключевые слова: экономика, кризисы, динамический анализ, доллар, сеньёраж, математическая модель, эмиссия, инфляция, цифровая экономика.Просмотров за год: 5. Цитирований: 2 (РИНЦ). -
Количественные оценки сейсмического риска и энергетические концепции сейсмостойкого строительства
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 61-76В настоящее время сейсмостойкое проектирование зданий основано на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием упругих спектров реакций (линейно-спектральный метод), связывающих закон движения грунта с абсолютным ускорением модели в виде нелинейного осциллятора.
Такой подход непосредственно не учитывает ни влияния длительности сильных движений, ни пластического поведения конструкции. Частотный состав и продолжительность колебаний грунта напрямую влияют на энергию, поступившую в сооружение и вызывающую повреждение его элементов. В отличие от силового или кинематического расчета сейсмическое воздействие на конструкцию можно интерпретировать, не рассматривая отдельно силы или перемещения, а представить как произведение обеих величин, т. е. работу или входную энергию (максимальную энергию, которую может приобрести сооружение в результате землетрясения).
При энергетическом подходе сейсмического проектирования необходимо оценить входную сейсмическую энергию в сооружение и ее распределение среди различных структурных компонентов.
В статье приводится обоснование энергетического подхода при проектировании сейсмостойких зданий и сооружений взамен применяемого в настоящее время метода, основанного на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием спектров реакции.
Отмечено, что интерес к использованию энергетических концепций в сейсмостойком проектировании начался с работ Хаузнера, который представил сейсмические силы в виде входной сейсмической энергии, используя спектр скоростей, и предложил считать, что повреждения в упругопластической системе, как и в упругой системе, вызывает одна и та же входная сейсмическая энергия.
В работе приведены индексы определения входной энергии землетрясения, предложенные различными авторами. Показано, что современные подходы обеспечения сейсмостойкости сооружений, основанные на представлении эффекта землетрясения как статической эквивалентной силы, недостаточно адекватно описывают поведение системы во время землетрясения.
В статье предлагается новый подход количественных оценок сейсмического риска, позволяющий формализовать процесс принятия решений относительно антисейсмических мероприятий. На основе количественных оценок сейсмического риска анализируется разработанный в НИУ МГСУ Стандарт организации (СТО) «Сейсмостойкость сооружений. Основные расчетные положения». В разработанном документе сделан шаг вперед в отношении оптимального проектирования сейсмостойких конструкций.
В предлагаемой концепции используются достижения современных методов расчета зданий и сооружений на сейсмические воздействия, которые гармонизированы с Еврокодом и не противоречат системе отечественных нормативных документов.
Ключевые слова: сейсмостойкость сооружений, энергетический метод, сейсмостойкое строительство, спектры реакции, входная энергия землетрясения, период повторяемости землетрясений, сейсмический риск, антисейсмические мероприятия, концептуальное проектирование, двухуровневый расчет, критерии сейсмостойкости, нелинейный статический и нелинейный динамический метод расчета.Просмотров за год: 21. -
Моделирование движения рельсового экипажа в кривой в Simpack Rail
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 249-263Просмотров за год: 20.В статье рассматривается определение одного из показателей динамических качеств (ПДК) железнодорожного подвижного состава — поперечного ускорения кузова — с использованием системы компьютерного моделирования динамики рельсовых экипажей Simpack Rail на комплексном уровне с переменной скоростью движения в графиковом режиме. Для этой цели использована ранее верифицированная с помощью средств кафедры «Электропоезда и локомотивы» РУТ (МИИТ) модель секции типового грузового электровоза колеи 1520 мм. По этой причине вопросы, связанные с построением и проверкой модели электровоза в препроцессоре, в данной статье опускаются. Подробно описано моделирование железнодорожного пути на основе картографических эксплуатационных данных — плана, профиля и возвышения наружного рельса. Приводятся статистические параметры (моменты) выбранной геометрической неровности (источника возмущения) по каждой рельсовой нити, а также параметры плана и профиля выбранного для моделирования участка пути в виде графиков считанных файлов данных. Измерение непогашенного поперечного ускорения кузова производится с учетом горизонтальной составляющей от действия силы тяжести, что воспроизводит принцип работы реальных датчиков измерения ускорения со свободно расположенной массой. В заключение производится сравнение искомого ПДК, определенного по методу среднего значения абсолютного максимума из смоделированного нестационарного процесса со значением, полученным из экспериментальных данных. По результатам сравнения можно сделать вывод о том, что на данный показатель качества с внешней стороны прежде всего влияют скорость и геометрические характеристики рельсового пути, которые в данном случае были смоделированы в строгом соответствии с картографическими данными реального железнодорожного участка, где проводились испытания. Допущенные условности в модели транспортного средства — секции грузового электровоза (сосредоточение инерционно-массовых характеристик тел в центре их тяжести, малость перемещений между телами) — при соблюдении постоянства основных геометрических и упруго-диссипативных характеристик связей тел позволяют в Simpack Rail смоделировать поведение (отклики) системы с необходимой достоверностью.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"