Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'деформация':
Найдено статей: 55
  1. Грачев В.А., Найштут Ю.С.
    Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77

    Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.

  2. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

  3. Долуденко А.Н., Куликов Ю.М., Панов В.А., Савельев А.С., Терешонок Д.В.
    Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645

    Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.

    В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.

  4. Петров И.Б., Миряха В.А., Санников А.В., Шевцов А.В.
    Численное моделирование начальной стадии разрушения метеорита в плотных слоях атмосферы в упругопластическом приближении
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 957-967

    В статье приводятся результаты моделирования деформации метеорита при попадании в плотные слои атмосферы разрывным методом Галёркина на неструктурированных треугольных сетках и методом сглаженных частиц. В качестве исходных данных брались материалы по Челябинскому метеориту. Проводилась серия расчётов, где варьировались характеристики материала метеорита и угол входа в плотные слои атмосферы.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  5. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Просмотров за год: 24.
  6. Михеев П.В., Горынин Г.Л., Борисова Л.Р.
    Модифицированная модель влияния концентрации напряжений вблизи разорванного волокна на прочность высокопрочных композитов при растяжении (MLLS-6)
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 559-573

    В статье предложена модель для оценки потенциальной прочности композиционного материала на основе современных волокон, разрушающихся хрупко.

    Моделируются материалы, состоящие из параллельных цилиндрических волокон, которые квазистатически растягиваются в одном направлении. Предполагается, что в выборке не меньше 100 штук, что соответствует практически значимым случаям. Известно, что волокна имеют разброс предельной деформации в выборке и разрушаются не одновременно. Обычно разброс их свойств описывается распределением Вейбулла–Гнеденко. Для моделирования прочности композита используется модель накопления разрывов волокон. Предполагается, что волокна, объединенные матрицей, дробятся до удвоенной неэффективной длины — расстояния, на котором возрастают напряжения от торца разорванного волокна до среднего. Однако такая модель сильно завышает прогноз прочности композитов с хрупкими волокнами. Например, так разрушаются углеродные и стеклянные волокна.

    В ряде случаев ранее делались попытки учесть концентрацию напряжений около разорванного волокна (модель Хеджепеста, модель Ермоленко, сдвиговой анализ), однако такие модели требовали или очень много исходных данных или не совпадали с экспериментом. Кроме того, такие модели идеализировали упаковку волокон в композите до регулярной гексагональной упаковки.

    В модели объединены подход сдвигового анализа к распределению напряжений около разрушенного волокна и статистический подход прочности волокон на основе распределения Вейбулла–Гнеденко, при этом введен ряд предположений, упрощающих расчет без потери точности.

    Предполагается, что перенапряжение на соседнем волокне увеличивает вероятность его разрушения в соответствии с распределением Вейбулла и число таких волокон с повышенной вероятностью разрушения прямо связано с числом уже разрушенных до этого. Все исходные данные могут быть получены из простых экспериментов. Показано, что учет перераспределения только на ближайшие волокна дает точный прогноз.

    Это позволило провести полный расчет прочности композита. Экспериментальные данные, полученные нами на углеродных волокнах, стеклянных волокнах и модельных композитах на их основе, качественно подтверждают выводы модели.

  7. Грачев В.А., Найштут Ю.С.
    Вариационный принцип для сплошных сред, обладающих памятью формы, при изменяющихся внешних силах и температуре
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 541-555

    В рамках феноменологической механики сплошной среды без анализа микрофизики явления рассматривается квазистатическая задача деформирования сплавов с памятью формы. Феноменологический подход основан на сопоставлении двух диаграмм деформирования материалов. Первая диаграмма отвечает активному пропорциональному нагружению, когда сплав ведет себя как идеальный упругопластический материал; после снятия нагрузки фиксируется остаточная деформация. Вторая диаграмма наблюдается, если деформированный образец нагреть до определенной для каждого сплава температуры. Происходит восстановление первоначальной формы: обратная деформация совпадает с точностью до знака с деформациями первой диаграммы. Поскольку первый этап деформирования может быть описан с по- мощью вариационного принципа, для которого доказывается существование обобщенных решений при произвольном нагружении, становится ясным, как объяснить обратную деформацию в рамках слегка видоизмененной теории пластичности. Нужно односвязную поверхность нагружения заменить двусвязной и, кроме того, вариационный принцип дополнить двумя законами термодинамики и принципом ортогональности термодинамических сил и потоков. Доказательство существования решений и в этом случае не встречает затруднений. Успешное применение теории пластичности при постоянной температуре порождает потребность получить аналогичный результат в более общем случае изменяющихся внешних сил и температуры. В работе изучается идеальная упругопластическая модель Мизеса при линейных скоростях деформаций. Учет упрочнения и использование произвольной поверхности нагружения не вызывают дополнительных трудностей.

    Формулируется расширенный вариационный принцип типа Рейсснера, который вместе с законами термопластичности позволяет доказать существование обобщенных решений для трехмерных тел, изготовленных из материалов, обладающих памятью формы. Основная трудность, которую приходится преодолевать, состоит в выборе функционального пространства для скоростей и деформаций точек континуума. Для этой цели в статье используется пространство ограниченных деформаций — основной инструмент математической теории пластичности. Процесс доказательства показывает, что принятый в работе выбор функциональных пространств не является единственным. Изучение других возможных расширенных постановок вариационной задачи, наряду с выяснением регулярности обобщенных решений, представляется интересной задачей для будущих исследований.

  8. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

  9. Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.

    Цитирований: 2 (РИНЦ).
  10. Жуков Б.А., Щукина Н.А.
    Приближенная модель плоских статических задач нелинейной упругости
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 889-896

    Работа посвящена построению приближенной математической модели нелинейной теории упругости для плоской деформации. В качестве метода, реализующего символьные вычисления, применяется метод эффектов третьего порядка. Предложенная модель позволяет использовать методы линейной теории упругости для решения конкретных задач. Данный метод является пригодным для автоматического получения аналитических решений плоских задач нелинейной теории упругости о концентрации напряжений около отверстий на базе математического пакета Maple. На примере треугольного контура исследован нелинейный эффект зависимости коэффициента концентрации напряжений от уровня внешней нагрузки.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.