Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'двумерная модель':
Найдено статей: 62
  1. Кащенко Н.М., Ишанов С.А., Мациевский С.В.
    Моделирование развития экваториальных плазменных пузырей из плазменных облаков
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 463-476

    В работе определяются и изучаются два параметра процесса развития экваториальных плазменных пузырей (ЭПП): максимальная скорость внутри ЭПП и время развития ЭПП. Исследования проводятся для случаев, когда ЭПП возникают из одной, двух или трех зон повышенной концентрации, или начальных плазменных облаков. Механизмом развития ЭПП является неустойчивость Релея–Тэйлора (НРТ). Ранее было выяснено, что время начальной стадии развития ЭПП должно уложиться в интервал времени, благоприятный для формирования ЭПП (в этом случае линейный инкремент нарастания больше нуля). Этот интервал укладывается для экваториальной ионосферы Земли в промежуток от 3000 с до 7000 с.

    Исследование проводилось в форме многочисленных вычислительных экспериментов с использованием разработанной авторами оригинальной двумерной математической и численной модели MI2 развития НРТ в экваториальной ионосфере Земли, аналогичной стандартной модели США SAMI2. Эта численно-математическая модель MI2 достаточно подробно описана в основном тексте статьи. Результаты, полученные в ходе проведенных исследований, могут быть использованы как в других теоретических работах, так и при планировании и проведении натурных экспериментов по генерации F-рассеяния в ионосфере Земли.

    Численное моделирование проводилось для геофизических условий, благоприятных для развития в экваториальной F-области ионосферы Земли ЭПП в результате НРТ. Численные исследования подтвердили, что время развития ЭПП из начальных неоднородностей с повышенной концентрацией существенно больше времени развития из зон пониженной концентрации. Однако в условиях, благоприятных для НРТ, ЭПП успевают достигнуть достаточно развитого состояния. Численные эксперименты также продемонстрировали, что развитые неоднородности сильно и нелинейно взаимодействуют между собой даже тогда, когда начальные плазменные облака сильно удалены друг от друга. Причем это взаимодействие более сильное, чем при развитии ЭПП из начальных неоднородностей с пониженной концентрацией. Результаты численных экспериментов показали хорошее согласие параметров развитых ЭПП с экспериментальными данными и с теоретическими исследованиями других авторов.

    Просмотров за год: 14.
  2. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

  3. Павлов Е.А., Осипов Г.В.
    Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453

    На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.

    Цитирований: 3 (РИНЦ).
  4. Галицкий В.В.
    Секционная модель несвободного роста дерева
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 307-322

    Представлена трехмерная секционная модель динамики биомассы дерева, растущего на ограниченной территории. Структура трехмерного дерева состоит из секций, периодически возникающих на макушке дерева и одновременно дающих начало виртуальным «деревьям», последовательно вложенным в своих предшественников. Зеленая биомасса секций есть разность смежных виртуальных деревьев. Секции имеют динамику, отличную от динамики самого дерева, и их биомасса со временем постепенно отмирает (в том числе и в условиях свободного роста дерева), что объясняет оголение ствола снизу. В 3D-модели динамики биомассы несвободно растущего дерева для описания динамики биомассы секций и составляющих их секторов используются уравнения, аналогичные предложенным для 2D-модели дерева. Представлены примеры динамики биомассы секторов, секций и дерева. Динамика годографов азимутального распределения биомассы секции демонстрирует, что нижние секции дерева, растущего на ограниченной территории, находятся в угнетении и отмирают (более быстро по сравнению с моделью свободно растущего дерева), а на макушке дерева появляются и растут свободно новые секции. В результате вверх по стволу двигается волна биомассы дерева.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  5. Шокиров Ф.Ш.
    Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 773-787

    Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках (2 + 1)-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.

    Просмотров за год: 6.
  6. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

  7. Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
  8. Кетова К.В., Романовский Ю.М., Русяк И.Г.
    Математическое моделирование динамики человеческого капитала
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342

    В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.

    В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.

    Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.

    Просмотров за год: 34.
  9. Васильев Е.В., Пержу А.В., Король А.О., Капитан Д.Ю., Рыбин А.Е., Солдатов К.С., Капитан В.Ю.
    Численное моделирование двумерных магнитных скирмионных структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061

    В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.

    В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.

    Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.

    Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.

  10. Гребенкин И.В., Алексеенко А.Е., Гайворонский Н.А., Игнатов М.Г., Казённов А.М., Козаков Д.В., Кулагин А.П., Холодов Я.А.
    Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395

    Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.