Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Бурлаков Д.С. (Burlakov D.S.)
- Востриков Д.Д. (Vostrikov D.D.)
- Добровольский Д.Д. (Dobrovolskii D.D.)
- Дутбайева Д.М. (Dutbayeva D.M.)
- Зафиевский Д.Д. (Zafievsky D.D.)
- Ильясов Д.В. (Ilyasov D.V.)
- Кабанов Д.К. (Kabanov D.K.)
- Клюкин Д.А. (Klyukin D.A.)
- Маршаков Д.В. (Marshakov D.V.)
- Фёдоров Д.Д. (Fiodorov D.D.)
- Хачай Д.М. (Khachai D.M.)
-
От локальной би- и квадростабильности к пространственно-временной неоднородности: обзор математических моделей и содержательные следствия
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 75-109Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.
Ключевые слова: популяция, динамика, возрастная структура, миграция, генетическая дивергенция, бистабильность, бифуркации. -
Транспортное моделирование: усреднение ценовых матриц
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 317-327В данной работе рассматриваются различные подходы к усреднению обобщенных цен передвижений, рассчитанных для разных способов передвижения в транспортной сети. Под способом передвижения понимается как вид транспорта, например легковой автомобиль или транспорт общего пользования, так и передвижение без использования транспорта, например пешком. Задача расчета матриц передвижений включает в себя задачу вычисления суммарных матриц, иными словами — оценку общего спроса на передвижения всеми способами, а также задачу расщепления матриц по способам передвижений, называемого также модальным расщеплением. Для расчета матриц передвижений используют гравитационные, энтропийные и иные модели, в которых вероятность передвижения между районами оценивается на основе некоторой меры удаленности этих районов друг от друга. Обычно в качестве меры дальности используется обобщенная цена передвижения по оптимальному пути между районами. Однако обобщенная цена передвижения отличается для разных способов передвижения. При расчете суммарных матриц передвижений возникает необходимость усреднения обобщенных цен по способам передвижения. К процедуре усреднения предъявляется естественное требование монотонности по всем аргументам. Этому требованию не удовлетворяют некоторые часто применяемые на практике способы усреднения, например усреднение с весами. Задача модального расщепления решается применением методов теории дискретного выбора. В частности, в рамках теории дискретного выбора разработаны корректные методы усреднения полезности альтернатив, монотонные по всем аргументам. Авторы предлагают некоторую адаптацию методов теории дискретного выбора для применения к вычислению усредненной цены передвижений в гравитационной и энтропийной моделях. Перенос формул усреднения из контекста модели модального расщепления в модель расчета матриц передвижений требует ввода новых параметров и вывода условий на возможное значение этих параметров, что и было проделано в данной статье. Также были рассмотрены вопросы перекалибровки гравитационной функции, необходимой при переходе на новый метод усреднения, если имеющаяся функция откалибрована с учетом использования средневзвешенной цены. Предложенные методики были реализованы на примере небольшого фрагмента транспортной сети. Приведены результаты расчетов, демонстрирующие преимущество предложенных методов.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, гравитационная функция. -
Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект. -
Методы моделирования композитов, армированных углеродными нанотрубками: обзор и перспективы
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1143-1162Изучение структурной характеристики композитов и наноструктур имеет фундаментальное значение в материаловедении. Теоретическое и численное моделирование и симуляция механических свойств наноструктур является основным инструментом, позволяющим проводить комплексные исследования, которые сложно проводить только экспериментально. Одним из примеров наноструктур, рассматриваемых в данной работе, являются углеродные нанотрубки (УНТ), которые обладают хорошими тепловыми и электрическими свойствами, а также низкой плотностью и высоким модулем Юнга, что делает их наиболее подходящим армирующим элементом для композитов, для потенциального применения в аэрокосмической, автомобильной, металлургической и биомедицинской промышленности. В данном обзоре мы рассмотрели методы моделирования, механические свойства и применение композитов с металлической матрицей, армированных УНТ. Также рассмотрены некоторые методы моделирования, применимые при исследованиях композитов с полимерными и металлическими матрицами. Рассмотрены такие методы, как метод градиентного спуска, метод Монте-Карло, методы молекулярной статики и молекулярной динамики. Было показано, что молекулярно-динамическое моделирование отлично подходит для создания различных систем композиционных материалов и изучения свойств композитов с металлической матрицей, армированных углеродными наноматериалами, в различных условиях. В данной работе кратко представлены наиболее часто используемые потенциалы, описывающие взаимодействие систем моделирования композитов. Правильный выбор потенциалов взаимодействия частей композитов напрямую влияет на описание изучаемого явления. Детализирована и обсуждена зависимость механических свойств композитов от объемной доли, диаметра, ориентации и количества УНТ. Показано, что объемная доля углеродных нанотрубок имеет существенное влияние на предел прочности и модуль Юнга. Диаметр УНТ оказывает большее значение на предел прочности, нежели на модуль упругости. Также приведен в пример работы, в которых изучается влияние длины УНТ на механические свойства композитов. В заключении нами предложены перспективы направления развития молекулярно-динамического моделирования в отношении композитов с металлической матрицей, армированных углеродными наноматериалами.
-
Компьютерное моделирование магнитных систем некоторых физических установок
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 189-198Просмотров за год: 4. Цитирований: 2 (РИНЦ).В данной работе приводятся результаты численного моделирования сверхпроводящей магнитной фокусирующей системы. При моделировании этой системы проводился дополнительный контроль точности аппроксимации условия u(∞)=0 с использованием метода Ричардсона. В работе представлены также некоторые результаты сравнения расчетного распределения магнитного поля с проведенными измерениями поля модифицированного магнита СП-40 физической установки «МАРУСЯ». Полученные результаты расчетов магнитных систем используются для проведения компьютерного моделирования физических установок и эксперимента на них, а в последующем, после проведения сеансов набора физических данных, будут использованы для обработки эксперимента.
-
Реализация клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 323-326Просмотров за год: 9. Цитирований: 3 (РИНЦ).В данной статье проанализирован опыт преподавания курса «Программирование на CUDA и OpenCL» для участников ежегодной межвузовской молодежной школы по высокопроизводительным вычислениям МФТИ-2010. В статье разобраны как содержимое лекций и семинарские задачи, так и особенности преподнесения материала. Обсуждаются результаты, полученные учащимися при выполнении практических задач. Приводится сравнение быстродействия различных алгоритмов реализации клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL.
-
Методика эталонных «line-by-line» расчетов атмосферной радиации
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 553-562Просмотров за год: 4. Цитирований: 3 (РИНЦ).В работе описана методика «line-by-line» расчета тепловой радиации Земли и земной атмосферы. Расчет пространственно-углового распределения радиации производится численным интегрированием кинетического уравнения переноса излучения и уравнений для угловых моментов методом квазидиффузии. В качестве исходных данных для восстановления оптических параметров атмосферы используется банк линий молекулярного поглощения HITRAN [Rothman et al., 2009].
-
Применение метода конечных элементов для моделирования эволюционных процессов теплопроводности в облученных электронными пучками полярных диэлектриках
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 767-780Просмотров за год: 5. Цитирований: 3 (РИНЦ).Представлены результаты компьютерного моделирования нестационарных температурных полей, возникающих в полярных диэлектриках, облученных сфокусированными электронными пучками средних энергий, при исследовании с помощью методик растровой электронной микроскопии. Математическая модель основана на решении многомерного эволюционного уравнения теплопроводности численным конечноэлементным методом. Аппроксимация теплового источника проведена с учетом оценки области взаимодействия электронов с веществом на основе симуляции электронных траекторий методом Монте-Карло. Разработано программное приложение в ППП Маtlab, реализующее данную модель. Приведены геометрические интерпретации и результаты расчётов, демонстрирующие особенности температурного нагрева модельных образцов электронным зондом, при заданных параметрах эксперимента и принятой аппроксимации источника.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"