Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'гидродинамические модели второго порядка':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  2. Алексеенко А.Е., Холодов Я.А., Холодов А.С., Горева А.И., Васильев М.О., Чехович Ю.В., Мишин В.Д., Старожилец В.М.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203

    В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  3. Холодов Я.А., Алексеенко А.Е., Холодов А.С., Васильев М.О., Мишин В.Д.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть II
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1205-1219

    Целью данной работы является обобщение макроскопических гидродинамических моделей второго порядка, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным измерениям уравнения состояния — зависимости давления от плотности транспортного потока, получаемого эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов. Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства любой феноменологической модели. Проверка работоспособности предложенного подхода проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, предоставляемых системой PeMS (http://pems.dot.ca.gov/), таких как моделирование движения трафика на заданном участке транспортной сети автострады I-580 в Калифорнии.

    Просмотров за год: 3.
  4. Назаров Ф.Х.
    Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142

    Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.

  5. Сухинов А.И., Чистяков А.Е., Семенякина А.А., Никитина А.В.
    Численное моделирование экологического состояния Азовского моря с применением схем повышенного порядка точности на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 151-168

    В статье приводятся результаты трехмерного моделирования экологического состояния мелководного водоема на примере Азовского моря с использованием схем повышенного порядка точности на многопроцессорной вычислительной системе Южного федерального университета. Для решения поставленной задачи были построены и изучены дискретные аналоги операторов конвективного и диффузионного переносов четвертого порядка точности в случае частичной заполненности ячеек расчетной области. Разработанные схемы повышенного (четвертого) порядка точности были использованы при решении задач водной экологии для моделирования пространственного распределения загрязняющих биогенных веществ, вызывающих бурный рост фитопланктона, многие виды которого являются токсичными и вредоносными. Использование схем повышенного порядка точности позволило повысить качество входных данных, а также уменьшить значение погрешности при решении модельных задач водной экологии. Были проведены численные эксперименты для задачи транспорта веществ на основе схем второго и четвертого порядков точностей, которые показали, что для задачи диффузии-конвекции удалось повысить точность в 48,7 раз. Предложен и численно реализован математический алгоритм, предназначенный для восстановления рельефа дна мелководного водоема на основе гидрографической информации (глубины водоема в отдельных точках или изолиний уровня), с помощью которого была получена карта рельефа дна Азовского моря, используемая для построения полей течений, рассчитанных на основе гидродинамической модели. Поля течений водного потока используются в работе в качестве входной информации для моделей водной экологии. Была разработана библиотека двухслойных итерационных методов, предназначенная для решения девятидиагональных сеточных уравнений, возникающих при дискретизации модельных задач изменения концентраций загрязняющих веществ, планктона и рыб на многопроцессорной вычислительной системе, что позволило повысить точность расчетных данных и дало возможность получать оперативные прогнозы изменения экологического состояния мелководного водоема в кратчайшие временные промежутки.

    Просмотров за год: 4. Цитирований: 31 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.