Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Управление движением жесткого тела в вязкой жидкости
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 659-675Просмотров за год: 2. Цитирований: 1 (РИНЦ).Решена задача оптимального управления движением мобильного объекта с внешней жесткой оболочкой вдользаданной траектории в вязкой жидкости. Рассматриваемый мобильный робот обладает свойством самопродвижения. Самопродвижение осуществляется за счет возвратнопоступательных колебаний внутренней материальной точки. Оптимальное управление движением построено на основе системы нечеткого логического вывода Сугено. Для получения базы нечетких правил предложен подход, основанный на построении деревьев решений с помощью разработанного генетического алгоритма структурно-параметрического синтеза.
-
Эффективное и безошибочное сокрытие информации в гибридном домене цифровых изображений с использованием метаэвристической оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 197-210Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.
-
Решение задачи оптимизации схемы размещения производства древесных видов топлива по критерию себестоимости тепловой энергии
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 651-659Просмотров за год: 5. Цитирований: 2 (РИНЦ).Представлена математическая модель задачи оптимального размещения предприятий по производству топлива из возобновляемых древесных отходов для обеспечения распределенной системы теплоснабжения региона. Оптимизация осуществляется исходя из минимизации совокупных затрат на производство конечного продукта – тепловой энергии на основе древесного топлива. Предложен метод решения задачи с использованием генетического алгоритма. Приведены практические результаты применения модели на примере Удмуртской Республики.
-
Решение логистической задачи топливоснабжения распределенной региональной системы теплоснабжения
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 451-470Предложена методика решения задачи логистики топливоснабжения региона, включающая в себя взаимосвязанные задачи маршрутизации, кластеризации, оптимального распределения ресурсов и управления запасами. Расчеты проведены на примере системы топливоснабжения Удмуртской Республики.
Ключевые слова: логистика, топливоснабжение, маршрутизация, кластеризация, оптимизация, управление запасами, генетический алгоритм.Просмотров за год: 1. Цитирований: 6 (РИНЦ). -
Неоднородные клеточные генетические алгоритмы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 775-780Просмотров за год: 9. Цитирований: 3 (РИНЦ).В работе вводится в рассмотрение понятие неоднородного клеточного генетического алгоритма, в котором ряд параметров, влияющих на работу генетических операторов, оказывается зависимым от местоположения клеток заданного клеточного пространства. Приводятся результаты численного сравнения неоднородных клеточных генетических алгоритмов со стандартными вариантами генетических алгоритмов, показывающие преимущества предложенного подхода при минимизации мультимодальных функций с большим числом локальных экстремумов. Рассматривается крупноблочная параллельная реализация неоднородных клеточных алгоритмов с использованием технологии MPI.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"