Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вычислительный эксперимент':
Найдено статей: 120
  1. Белотелов Н.В., Коноваленко И.А.
    Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305

    В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  2. Кутовский Н.А., Нечаевский А.В., Ососков Г.А., Пряхина Д.И., Трофимов В.В.
    Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963

    В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.

    Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  3. Белотелов Н.В., Коноваленко И.А., Назарова В.М., Зайцев В.А.
    Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850

    В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).

    Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.

    Просмотров за год: 32.
  4. Кащенко Н.М., Ишанов С.А., Мациевский С.В.
    Моделирование развития экваториальных плазменных пузырей из плазменных облаков
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 463-476

    В работе определяются и изучаются два параметра процесса развития экваториальных плазменных пузырей (ЭПП): максимальная скорость внутри ЭПП и время развития ЭПП. Исследования проводятся для случаев, когда ЭПП возникают из одной, двух или трех зон повышенной концентрации, или начальных плазменных облаков. Механизмом развития ЭПП является неустойчивость Релея–Тэйлора (НРТ). Ранее было выяснено, что время начальной стадии развития ЭПП должно уложиться в интервал времени, благоприятный для формирования ЭПП (в этом случае линейный инкремент нарастания больше нуля). Этот интервал укладывается для экваториальной ионосферы Земли в промежуток от 3000 с до 7000 с.

    Исследование проводилось в форме многочисленных вычислительных экспериментов с использованием разработанной авторами оригинальной двумерной математической и численной модели MI2 развития НРТ в экваториальной ионосфере Земли, аналогичной стандартной модели США SAMI2. Эта численно-математическая модель MI2 достаточно подробно описана в основном тексте статьи. Результаты, полученные в ходе проведенных исследований, могут быть использованы как в других теоретических работах, так и при планировании и проведении натурных экспериментов по генерации F-рассеяния в ионосфере Земли.

    Численное моделирование проводилось для геофизических условий, благоприятных для развития в экваториальной F-области ионосферы Земли ЭПП в результате НРТ. Численные исследования подтвердили, что время развития ЭПП из начальных неоднородностей с повышенной концентрацией существенно больше времени развития из зон пониженной концентрации. Однако в условиях, благоприятных для НРТ, ЭПП успевают достигнуть достаточно развитого состояния. Численные эксперименты также продемонстрировали, что развитые неоднородности сильно и нелинейно взаимодействуют между собой даже тогда, когда начальные плазменные облака сильно удалены друг от друга. Причем это взаимодействие более сильное, чем при развитии ЭПП из начальных неоднородностей с пониженной концентрацией. Результаты численных экспериментов показали хорошее согласие параметров развитых ЭПП с экспериментальными данными и с теоретическими исследованиями других авторов.

    Просмотров за год: 14.
  5. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

  6. Акимов С.В., Борисов Д.В.
    Моделирование центробежных насосов с использованием программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 907-919

    В работе представлена методика моделирования центробежных насосов с использованием программного комплекса (ПК) FlowVision на примере магистрального нефтяного центробежного насоса НМ 1250-260. В качестве рабочего тела как при стендовых испытаниях, так и при численном моделировании используется вода. Расчет проводится в полной трехмерной постановке. Для учета утечек через уплотнения моделирование проводится вместе с корпусом насоса. С целью уменьшения требуемых вычислительных ресурсов в работе предлагается не моделировать течение в уплотнениях напрямую, а задавать утечки с помощью расхода. Влияние шероховатости поверхностей насоса учитывается в модели пристеночных функций. Модель пристеночных функций использует эквивалентную песочную шероховатость, и в работе применяется формула пересчета реальной шероховатости в эквивалентную песочную. Вращение рабочего колеса моделируется с помощью метода скользящих сеток: данный подход полностью учитывает нестационарное взаимодействие между ротором и диффузором насоса, что позволяет с высокой точностью разрешить рециркуляционные вихри, возникающие на режимах с низкой подачей.

    Разработанная методика позволила добиться высокой согласованности результатов моделирования с экспериментом на всех режимах работы насоса. Отклонение на номинальном режиме по КПД составляет 0,42%, по напору — 1,9%. Отклонение расчетных характеристик от экспериментальных растет по мере увеличения подачи и достигает максимума на крайней правой точке характеристики (до 4,8% по напору). При этом среднее арифметическое относительное отклонение между численным моделированием и экспериментом для КПД насоса по шести точкам составляет 0,39% при погрешности измерения КПД в эксперименте 0,72%, что удовлетворяет требованиям к точности расчетов. В дальнейшем данная методика может быть использована для проведения серии оптимизационных и прочностных расчетов, так как моделирование не требует существенных вычислительных ресурсов и учитывает нестационарный характер течения в насосе.

  7. Капитан В.Ю., Перетятько А.А., Иванов Ю.П., Нефедев К.В., Белоконь В.И.
    Сверхмасштабируемое моделирование магнитных состояний и реконструкция типов упорядочения массивов наночастиц
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 309-318

    Рассматриваются два возможных вычислительных метода интерпретации экспериментальных данных, полученных методами магнитно-силовой зондовой микроскопии. Развитие методов моделирования и реконструирования распределения макроспинов проводится с целью изучения процессов перемагничивания наночастиц в упорядоченных двумерных массивах. Предлагаются подходы к разработке сверхмасштабируемых высокопроизводительных алгоритмов, предназначенных для параллельного исполнения на суперкомпьютерных кластерах для решения прямой и обратной задачи моделирования магнитных состояний, типов упорядочения и процессов перемагничивания наносистем с коллективным поведением. Результаты моделирования согласуются с результатами эксперимента.

    Просмотров за год: 2.
  8. Мацак И.С., Кудрявцев Е.М., Тугаенко В.Ю.
    Моделирование погрешностей измерений диаметра широкоапертурного лазерного пучка c плоским профилем
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 113-124

    Работа посвящена моделированию инструментальных погрешностей измерения диаметра лазерного пучка при использовании метода на основе ламбертовски рассеивающего на просвет экрана. В качестве модели пучка использовалось суперлоренцево распределение. Для определения влияния на погрешность измерения каждого из параметров проводились вычислительные эксперименты, результаты которых аппроксимировались аналитическими функциями. Были получены зависимости погрешностей от относительного размера пучка, пространственной неравномерности пропускания экрана, дисторсии объектива, физического виньетирования, наклона пучка, пространственного разрешения матрицы, разрядности АЦП-камеры. Показано, что погрешность может быть менее 1 %.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
  9. Астахов Н.С., Багинян А.С., Белов С.Д., Долбилов А.Г., Голунов А.О., Горбунов И.Н., Громова Н.И., Кашунин И.А., Кореньков В.В., Мицын В.В., Шматов С.В., Стриж Т.А., Тихоненко Е.А., Трофимов В.В., Войтишин Н.Н., Жильцов В.Е.
    Статус и перспективы вычислительного центра ОИЯИ 1-го уровня (TIER-1) для эксперимента CMS на большом адронном коллайдере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 455-462

    Компактный мюонный соленоид (CMS) — высокоточная детекторная установка на Большом адронном коллайдере (LHC) в ЦЕРН. Для осуществления обработки и анализа данных в CMS была разработана система распределенного анализа данных, предполагающая обязательное использование современных грид-технологий. Модель компьютинга для CMS — иерархическая (в смысле создания вычислительных центров разного уровня). Объединенный институт ядерных исследований (ОИЯИ) принимает активное участие в эксперименте CMS. В ОИЯИ создается центр 1-го уровня (Tier1) для CMS c целью обеспечения необходимой компьютерной инфраструктурой ОИЯИ и российских институтов, участвующих в эксперименте CMS. В работе описаны основные задачи и сервисы центра Tier1 для CMS в ОИЯИ и представлены статус и перспективы его развития.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  10. Шумов В.В.
    Учет психологических факторов в моделях боя (конфликта)
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 951-964

    Ход и исход боя в значительной степени зависят от морального духа войск, характеризуемого процентом потерь (убитых и раненых), при котором войска еще продолжают сражаться. Всякий бой есть психологический акт, заканчивающийся отказом от него одной из сторон. Обычно в моделях боя психологический фактор учитывают в решении уравнений Ланчестера (условие равенства сил, когда численность одной из сторон обращается в ноль). При этом подчеркивается, что модели ланчестеровского типа удовлетворительно описывают динамику боя только на начальных его стадиях. Для разрешения данного противоречия предложено использовать модификацию уравнений Ланчестера, учитывающую тот факт, что в любой момент боя по противнику ведут огонь не пораженные и не отказавшиеся от сражения бойцы. Полученные дифференциальные уравнения решаются численным методом и позволяют в динамике учитывать влияние психологического фактора и оценивать время завершения конфликта. Вычислительные эксперименты подтверждают известный из военной теории факт, что бой обычно заканчивается отказом бойцов одной из сторон от его продолжения (уклонение от боя в различных формах). Наряду с моделями временно́й и пространственной динамики предложено ис- пользовать модификацию функции технологии конфликта С. Скапердаса, основанную на учете принципов боя. Для оценки вероятности победы одной из сторон в бою учитываются проценты выдерживаемых сторонами кровавых потерь и показатель боевого превосходства. Последний является средним геометрическим параметров, характеризующих всестороннее обеспечение боя, разведку, маневр и огонь. Анализ хода и исхода ряда военных компаний последних десятилетий показал, что процент выдерживаемых военных потерь резко снизился в странах с низким уровнем рождаемости. Наличие технологического превосходства над противником не гарантирует военного успеха, особенно в случае продолжительного конфликта. В этой связи представляются актуальными дальнейшие исследования, позволяющие количественно учесть вклад психологического фактора в ход и исход боя, а также учитывать влияние социально-психологических воздействий.

    Просмотров за год: 7. Цитирований: 4 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.