Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вычислительный эксперимент':
Найдено статей: 120
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 801-803
  4. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  9. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  10. Матюшкин И.В., Заплетина М.А.
    Компьютерное исследование голоморфной динамики экспоненциального и линейно-экспоненциального отображений
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 383-405

    Работа принадлежит направлению экспериментальной математики, исследующей свойства математических объектов вычислительными средствами компьютера. Базовым отображением служит экспоненциальное, топологические свойства (букеты Кантора) которого отличаются от свойств полиномиальных и рациональных функций на комплексной плоскости. Предметом исследования являются характер и особенности множеств Фату и Жюлиа, а также точек равновесия и орбит нуля трех итерированных комплекснозначных отображений: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, где $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. Для квазилинейного отображения g, не обладающего свойством аналитичности, было обнаружено два бифуркационных перехода: рождение новой точки равновесия (для него было найдено критическое значение параметра, а сама бифуркация представляет собой смешанный случай «вилки» и седлоузельного перехода) и переход к радикальной трансформации множества Фату. Выявлен нетривиальный характер сходимости к фиксированной точке, связанный с появлением «долин» на графике скоростей сходимости. Для двух других отображений существенна монопериодичность режимов, отмечен феномен «удвоения периода» (в одном случае по пути $39\to 3$, в другом — по пути $17\to 2$), причем обнаружено совпадение кратности периода и числа рукавов спирали множества Жюлиа в окрестности фиксированной точки. Приведен богатый иллюстративный материал, численные результаты экспериментов и сводные таблицы, отражающие параметрическую зависимость отображений. Сформулированы вопросы для дальнейшего исследования средствами традиционной математики.

    Просмотров за год: 51. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.