Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'высокоточные схемы':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  3. Брагин М.Д., Рогов Б.В.
    Бикомпактные схемы для задач газовой динамики: обобщение на сложные расчетные области методом свободной границы
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 487-504

    Работа посвящена использованию бикомпактных схем для численного решения эволюционных уравнений гиперболического типа. Основным преимуществом схем этого класса является сочетание двух положительных свойств: пространственной аппроксимации высокого четного порядка на шаблоне, всегда занимающем одну ячейку сетки, и спектрального разрешения, лучшего по сравнению с классическими компактными конечно-разностными схемами того же порядка пространственной аппроксимации. Рассматривается одна особенность бикомпактных схем — жесткая привязка их пространственной аппроксимации к декартовым сеткам (с ячейками-параллелепипедами в трехмерном случае). Она делает затруднительным применение бикомпактных схем к решению задач в сложных расчетных областях в рамках подхода неструктурированных сеток. Предлагается решать эту проблему путем применения известных методов аппроксимации границ сложной формы и соответствующих им краевых условий на декартовых сетках. Обобщение бикомпактных схем на задачи в геометрически сложных областях проводится на примере задач газовой динамики и уравнений Эйлера. В качестве конкретного метода, позволяющего учесть на декартовых сетках влияние твердых границ произвольной формы на течение газа, выбирается метод свободной границы. Приводится краткое описание этого метода, выписываются его уравнения. Для них строятся бикомпактные схемы четвертого порядка аппроксимации по пространству с локально-одномерным расщеплением. Компенсационный поток метода свободной границы дискретизируется со вторым порядком точности. Для интегрирования по времени в получаемых схемах применяются неявный метод Эйлера и $L$-устойчивый жестко-точный трехстадийный однократно диагонально-неявный метод Рунге–Кутты третьего порядка точности. Разработанные бикомпактные схемы тестируются на трех двумерных задачах: о стационарном сверхзвуковом обтекании с числом Маха, равным трем, одного круглого цилиндра и группы изт рех круглых цилиндров, а также о нестационарном взаимодействии плоской ударной волны и круглого цилиндра в канале с плоскопараллельными стенками. Полученные результаты хорошо согласуются с результатами других работ: твердые тела физически корректно влияют на поток газа, давление в контрольных точках на поверхностях тел рассчитывается с точностью, в целом отвечающей выбранному разрешению сетки и уровню численной диссипации.

  4. Софронов И.Л., Довгилович Л.Е., Краснов Н.А.
    Об аппроксимации прозрачных граничных условий с высоким порядком точности для волнового уравнения
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 45-56

    В работе рассмотрена проблема повышения порядка аппроксимации прозрачных граничных условий для волнового уравнения при использовании разностных схем вплоть до шестого порядка точности по пространству. В качестве примера формулируется задача распространения волн в полубесконечном волноводе прямоугольного сечения. Предложен подход, позволивший вывести экономные и высокоточные формулы при дискретизации оператора прозрачных граничных условий. Приведены примеры численных расчетов, подтверждающие точность и устойчивость полученных разностных алгоритмов.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.