Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'возбудимость':
Найдено статей: 13
  1. Цыганов М.А., Бикташев В.Н.
    Солитонное и полусолитонное взаимодействие волн в возбудимых системах с нелинейной кросс-диффузией
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 109-115

    Исследованы свойства нелинейных волн в математической модели «хищник-жертва» с таксисом. Нами показано, что для таких систем с положительным и отрицательным таксисом существует большая параметрическая область, для которой характерно квазисолитонное взаимодействие волн: сталкивающиеся волны проходят/отражаются друг сквозь друга, а также отражаются от непроницаемых границ. В численных экспериментах мы также демонстрируем новое волновое явление — полусолитонное вазимодействие: при столкновении двух волн одна аннигилирует, а другая продолжает распространение. Мы показали, что этот эффект зависит от «возраста» или, эквивалентно, «ширины» сталкивающихся волн.

    Просмотров за год: 3.
  2. Тарасевич Ю.Ю., Зелепухина В.А.
    Академическая сеть как возбудимая среда
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 177-183

    В работе проведено моделирование распространения некой идеи в профессиональной виртуальной группе. Мы рассматриваем распространение возбуждения в неоднородной возбудимой среде высокой связности. Предполагается, что элементы сети образуют полный граф. Параметры элементов распределены по нормальному закону. Моделирование показало, что в зависимости от параметров в виртуальной группе интерес к идее может затухать или испытывать колебания. Наличие в сети постоянно возбужденного элемента достаточно высокой активности приводит к хаотизации — доля членов сообщества, активно интересующихся идеей, меняется нерегулярно.

    Просмотров за год: 6.
  3. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.