Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'аэродинамическое сопротивление':
Найдено статей: 5
  1. Лукашенко В.Т., Максимов Ф.А.
    Моделирование полета осколков метеорного тела с учетом вращения
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 593-612

    Алгоритм решения сопряженной аэродинамической и баллистической задач, разработанный на основе метода моделирования с помощью системы сеток, дополнен расчетным механизмом, позволяющим учитывать перемещение и вращение тел относительно центров масс. Для заданной конфигурации тел решается задача обтекания методом установления, после этого состояние системы перерассчитывается через малый промежуток времени. Итерационным способом оказывается возможным проследить динамику системы на больших интервалах времени. Алгоритм реализован для исследования полета системы тел с учетом их относительного положения и вращения. Выполнено тестирование алгоритма на задаче обтекания тела сегментально-конической формы. Показано хорошее согласование результатов с экспериментальными исследованиями. Алгоритм применен для расчета задачи о сверхзвуковом полете вращающегося тела. Для тел прямоугольной формы, имитирующих удлиненные осколки метеорного тела, показано, что для удлиненных тел аэродинамически более устойчивым положением является полет с большей по площади стороной поперек направления полета. Это приводит фактически к полету тел с максимально возможным аэродинамическим сопротивлением из-за максимальной площади миделя. Алгоритм применен для расчета задачи о разлете двух одинаковых тел прямоугольной формы с учетом их вращения. Вращение приводит к тому, что тела разлетаются не только под действием расталкивающей аэродинамической силы, но и дополнительной боковой силы из-за приобретения угла атаки. Скорость разлета двух осколков метеорного тела удлиненной формы при учете вращения увеличивается до трех раз по сравнению с вариантом, когда предполагается, что тела не вращаются. Исследование проведено в целях оценки влияния различных факторов на скорость разлета осколков метеорного тела после разрушения для построения возможных траекторий выпавших на землю метеоритов. Разработанный алгоритм решения сопряженной аэродинамической и баллистической задач с учетом относительного перемещения и вращения тел может быть использован для решения технических задач, например для исследования динамики разделения ступеней летательного аппарата.

    Просмотров за год: 6.
  2. Митин А.Л., Калашников С.В., Янковский Е.А., Аксенов А.А., Жлуктов С.В., Чернышев С.А.
    Методические аспекты численного решения задач внешнего обтекания на локально-адаптивных сетках с использованием пристеночных функций
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1269-1290

    Работа посвящена исследованию возможности повышения эффективности решения задач внешней аэродинамики. Изучаются методические аспекты применения локально-адаптивных неструктурированных расчетных сеток и пристеночных функций для численного моделирования турбулентных течений около летательных аппаратов. Интегрируются осредненные по Рейнольдсу уравнения Навье–Стокса, которые замыкаются стандартной моделью турбулентности $k–\varepsilon$. Рассматривается обтекание крылового профиля RAE 2822 турбулентным дозвуковым потоком вязкого сжимаемого газа. Расчеты проводятся в программном ВГД-комплексе FlowVision. Анализируется эффективность применения технологии сглаживания диффузионных потоков и формулы Брэдшоу для турбулентной вязкости в качестве мер, повышающих точность решения аэродинамических задач на локально-адаптивных сетках. Результаты исследования показывают, что использование технологии сглаживания диффузионных потоков приводит к существенному уменьшению расхождений в величине коэффициента лобового сопротивления между результатами расчетов и экспериментальными данными. Кроме того, обеспечивается регуляризация распределения коэффициента поверхностного трения на криволинейной поверхности профиля. Эти результаты позволяют сделать вывод о том, что данная технология является эффективным способом повышения точности расчетов на локально-адаптивных сетках. Формула Брэдшоу для динамического коэффициента турбулентной вязкости традиционно используется в модели SST $k–\omega$. В настоящей работе исследуется возможность ее применения в стандартной $k–\varepsilon$-модели турбулентности. Результаты расчетов показывают, что, с одной стороны, данная формула обеспечивает хорошее согласование суммарных аэродинамических характеристик и распределения коэффициента давления по поверхности профиля с экспериментом. Помимо этого, она значительно повышает точность моделирования течения в пограничном слое и в следе. С другой стороны, использование формулы Брэдшоу при моделировании обтекания профиля RAE 2822 приводит к занижению коэффициента поверхностного трения. Поэтому в работе делается вывод о том, что практическое применение формулы Брэдшоу требует ее предварительной валидации и калибровки на надежных экспериментальных данных для рассматриваемого класса задач. Результаты работы в целом показывают, что при использовании рассмотренных технологий численное решение задач внешнего обтекания на локально-адаптивных сетках с применением пристеночных функций обеспечивает точность, приемлемую для оперативной оценки аэродинамических характеристик, а ПК FlowVision является эффективным инструментом решения задач предварительного аэродинамического проектирования, концептуального проектирования и оптимизации аэродинамических форм.

  3. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

  4. Максимов Ф.А.
    Сверхзвуковое обтекание системы тел
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 969-980

    Работа посвящена аэродинамическим свойствам системы тел, обтекаемой сверхзвуковым потоком. Рассматривается вопрос об уменьшении взаимного влияния с увеличением размера, характеризующего разлет элементов системы. Для моделирования течения применен метод построения сетки из набора сеток. Одна из сеток, регулярная с прямоугольными ячейками, отвечает за интерференцию между телами и служит для описания внешнего невязкого течения. Другие сетки связаны с поверхностями обтекаемых тел и позволяют описать вязкие слои около обтекаемых тел. Эти сетки накладываются на первую, без совмещения каких-либо узлов. Граничные условия реализуются через интерполяцию функций на границах с одной сетки на другую.

    Просмотров за год: 1. Цитирований: 19 (РИНЦ).
  5. Фарапонов В.В., Савкина Н.В., Дьячковский А.С., Чупашев А.В.
    Расчет аэродинамического коэффициента лобового сопротивления тела в дозвуковых и трансзвуковых режимах движения с помощью пакета ANSYS Fluent
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 845-853

    Газодинамический подход к расчету аэродинамических характеристик современных летательных аппаратов приводит к необходимости рассмотрения сложного и обширного комплекса задач требующих разработки все новых и новых методов для их решения. Был произведен расчет в пакете ANSYS Fluent коэффициента лобового сопротивления для двух тел в дозвуковых и трансзвуковых режимах обтекания. Сравнение численного решения и результатов по эксперименту для этих тел дали хорошее совпадение, погрешность расчетов не превышает 3 %.

    Просмотров за год: 6. Цитирований: 5 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.