Все выпуски

Моделирование жесткости для шагающих роботов

 pdf (5489K)  / Аннотация

Список литературы:

  1. G. Alici, B. Shirinzadeh. Enhanced stiffness modeling, identification and characterization for robot manipulators // IEEE transactions on robotics. — 2005. — V. 21, no. 4. — P. 554–564.
  2. C. Corradini, J.-C. Fauroux, S. Krut, et al. Evaluation of a 4-degree of freedom parallel manipulator stiffness / Proceedings of the 11th World Congress in Mechanisms and Machine Science. — 2003. — Tianjin (China).
  3. D. Gouaillier, V. Hugel, P. Blazevic, et al. Mechatronic design of NAO humanoid / IEEE International Conference on Robotics and Automation. — 2009. — P. 769–774.
  4. Y. Guo, H. Dong, Y. Ke. Stiffness-oriented posture optimization in robotic machining applications // Robotics and Computer-Integrated Manufacturing. — 2015. — V. 35. — P. 69–76.
  5. I. Ha, Y. Tamura, H. Asama, et al. Development of open humanoid platform DARwIn-OP / Proceedings of SICE Annual Conference (SICE). — 2011. — P. 2178–2181.
  6. R. Khusainov, I. Shimchik, I. Afanasyev, E. Magid. Toward a human-like locomotion: Modelling dynamically stable locomotion of an anthropomorphic robot in simulink environment / International Conference on Informatics in Control, Automation and Robotics. — 2015. — V. 02. — P. 141–148.
  7. A. Klimchik, Y. Wu, A. Pashkevich, et al. Optimal selection of measurement configurations for stiffness model calibration of anthropomorphic manipulators // Applied Mechanics and Materials. — Trans. Tech. Publ, 2012. — V. 162. — P. 161–170.
  8. A. Klimchik, A. Pashkevich, D. Chablat. CAD-based approach for identification of elasto-static parameters of robotic manipulators // Finite Elements in Analysis and Design. — 2013. — V. 75. — P. 19–30.
  9. A. Klimchik, D. Chablat, A. Pashkevich. Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings // Mechanism and Machine Theory. — 2014. — V. 79. — P. 1–28.
  10. A. Klimchik, B. Furet, S. Caro, A. Pashkevich. Identification of the manipulator stiffness model parameters in industrial environment // Mechanism and Machine Theory. — 2015. — V. 90. — P. 1–22.
  11. A. Klimchik, A. Pashkevich, D. Chablat. Fundamentals of manipulator stiffness modeling using matrix structural analysis // Mechanism and Machine Theory. — 2019. — V. 133. — P. 365–394.
  12. M. Lapeyre, P. Rouanet, P.-Y. Oudeyer. The poppy humanoid robot: Leg design for biped locomotion / IEEE/RSJ International Conference on Intelligent Robots and Systems. — 2013. — P. 349–356.
  13. S. J. Leon, I. Bica, T. Hohn. Linear algebra with applications. — New York: Macmillan, 1980.
  14. J. Liu, Y. Zhang, Z. Li. Improving the positioning accuracy of a neurosurgical robot system // IEEE/ASME Transactions on Mechatronics. — 2007. — V. 12, no. 5. — P. 527–533.
  15. S. Mamedov, D. Popov, S. Mikhel, A. Klimchik. Compliance Error Compensation based on Reduced Model for Industrial Robots / International Conference on Informatics in Control, Automation and Robotics. — 2018. — V. 2. — P. 190–201.
  16. H. C. Martin. Introduction to matrix methods of structural analysis. — McGraw-Hill, 1966.
  17. A. Nubiola, I. A. Bonev. Absolute calibration of an ABB IRB 1600 robot using a laser tracker // Robotics and Computer-Integrated Manufacturing. — 2013. — V. 29, no. 1. — P. 236–245.
  18. A. Olabi, M. Damak, R. Bearee, et al. Improving the accuracy of industrial robots by offline compensation of joints errors / IEEE International Conference on Industrial Technology (ICIT). — 2012. — P. 492–497.
  19. T. Ozaki, T. Suzuki, T. Furuhashi, et al. Trajectory control of robotic manipulators using neural networks // IEEE Transactions on Industrial Electronics. — 1991. — V. 38, no. 3. — P. 195–202.
  20. A. Pashkevich, D. Chablat, P. Wenger. Stiffness analysis of overconstrained parallel manipulators // Mechanism and Machine Theory. — 2009. — V. 44, no. 5. — P. 966–982.
  21. A. Pashkevich, A. Klimchik, D. Chablat. Enhanced stiffness modeling of manipulators with passive joints // Mechanism and machine theory. — 2011. — V. 46, no. 5. — P. 662–679.
  22. T. Pigoski, M. Griffis, J. Duffy. Stiffness mappings employing different frames of reference // Mechanism and machine theory. — 1998. — V. 33, no. 6. — P. 825–838.
  23. D. Popov, A. Klimchik, I. Afanasyev. Design and Stiffness Analysis of 12 DoF Poppy-inspired Humanoid / International Conference on Informatics in Control, Automation, and Robotics. — 2017. — P. 66–78.
  24. D. Popov, A. Klimchik. Stiffness Analysis for Anthropomorphic Platform / 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). — 2018. — P. 106–108.
  25. Y. Sakagami, R. Watanabe, C. Aoyama, et al. The intelligent ASIMO: System overview and integration / IEEE/RSJ international conference on intelligent robots and systems. — 2002. — V. 3. — P. 2478–2483.
  26. J. K. Salisbury. Active stiffness control of a manipulator in cartesian coordinates / 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. — 1980. — V. 19. — P. 95–100.
  27. J. Yamaguchi, E. Soga, S. Inoue, A. Takanishi. Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking / IEEE International Conference on Robotics and Automation. — 1999. — V. 1. — P. 368–374.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.