Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Список литературы:
- Online linear optimization and adaptive routing // Journal of Computer and System Sciences. — 2008. — V. 74, no. 1. — P. 97–114. — DOI: 10.1016/j.jcss.2007.04.016. — MathSciNet: MR2364184. , .
- Adaptive Stochastic Mirror Descent for Constrained Optimization. — 2017. — https://arxiv.org/pdf/1705.02031.pdf . .
- Primal-dual mirror descent for the stochastic programming problems with functional constraints // Computational Mathematics and Mathematical Physics. — 2018. — (accepted). — https://arxiv.org/pdf/1604.08194.pdf. — in Russian. — MathSciNet: MR3884238. , , , .
- Mirror descent and convex optimization problems with non-smooth inequality constraints / Large-Scale and Distributed Optimization. Lecture Notes in Mathematics. — 2018. — V. 2227. — P. 181–213. — MathSciNet: MR3888675. , , , , .
- The comirror algorithm for solving nonsmooth constrained convex problems // Operations Research Letters. — 2010. — V. 38, no. 6. — P. 493–498. — DOI: 10.1016/j.orl.2010.08.005. — MathSciNet: MR2734206. , , , .
- Mirror descent and nonlinear projected subgradient methods for convex optimization // Operations Research Letters. — 2003. — V. 31, no. 3. — P. 167–175. — DOI: 10.1016/S0167-6377(02)00231-6. — MathSciNet: MR1967286. , .
- Lectures on Modern Convex Optimization. — Philadelphia: Society for Industrial and Applied Mathematics, 2001. — 590 p. — MathSciNet: MR1857264. , .
- Robust Truss Topology Design via semidefinite programming // SIAM Journal on Optimization. — 1997. — V. 7, no. 4. — P. 991–1016. — DOI: 10.1137/S1052623495291951. — MathSciNet: MR1479611. , .
- Convex Optimization. — New York: Cambridge University Press, 2004. — 730 p. — MathSciNet: MR2061575. , .
- Multi-scale exploration of convex functions and bandit convex optimization. — 2015. — e-print. — http://research.microsoft.com/en-us/um/people/sebubeck/ConvexBandits.pdf. , .
- Regret analysis of stochastic and nonstochastic multi-armed bandit problems // Foundation and Trends in Machine Learning. — 2012. — V. 5, no. 1. — P. 1–122. — DOI: 10.1561/2200000024. , .
- On the relationship between simulation logit dynamics in the population game theory and a mirror descent method in the online optimization using the example of the shortest path problem // PROCEEDINGS OF MIPT. — 2015. — V. 7, no. 4. — P. 104–113. — in Russian. , , .
- Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and stronglyconvex case // Automation and Remote Control. — 2017. — V. 78, no. 2. — P. 224–234. — DOI: 10.1134/S0005117917020035. — MathSciNet: MR3665422. , , , , .
- Beyond the regret minimization barrier: Optimal algorithms for stochastic stronglyconvex optimization // JMLR. — 2014. — V. 15. — P. 2489–2512. — MathSciNet: MR3247148. , .
- Introduction to online convex optimization // Foundations and Trends in Optimization. — 2015. — V. 2, no. 3–4. — P. 157–325. .
- Online Convex Optimization with Stochastic Constraints. — 2017. — https://arxiv.org/pdf/1708.03741.pdf . , , .
- Adaptive Algorithms for Online Convex Optimization with Long-term Constraints. — 2015. — https://arxiv.org/abs/1512.07422 . , , .
- Efficient algorithms for online decision problems // Journal of Computer and System Sciences. — 2005. — V. 71. — P. 291–307. — DOI: 10.1016/j.jcss.2004.10.016. — MathSciNet: MR2168355. , .
- Prediction, learning and games. — New York: Cambridge University Press, 2006. — 403 p. — MathSciNet: MR2409394. , .
- Efficient methods for large-scale convex optimization problems // Ekonomika i Matematicheskie Metody. — 1979. — V. 15, no. 1. — in Russian. .
- Problem Complexity and Method Efficiency in Optimization. — New York: J. Wiley & Sons, 1983. — 404 p. — MathSciNet: MR0702836. , .
- Introductory Lectures on Convex Optimization: A Basic Course. — Massachusetts: Kluwer Academic Publishers, 2004. — 236 p. — MathSciNet: MR2142598. .
- A general method of solving extremum problems // Soviet Mathematics Doklady. — 1967. — V. 8, no. 3. — P. 593–597. — in Russian. — MathSciNet: MR0217997. .
- Generalized gradient descent with application to block programming // Kibernetika. — 1967. — V. 3, no. 3. — P. 53–55. — in Russian. .
- Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints // Trudy Instituta Matematiki i Mekhaniki URO RAN. — 2018. — V. 24, no. 2. — P. 266–279. — DOI: 10.21538/0134-4889-2018-24-2-266-279. — Math-Net: Mi eng/timm1541. — MathSciNet: MR3853340. , , , .
- Primal-dual subgradient methods for huge-scale linear conic problem // SIAM Journal on Optimization. — 2014. — V. 24, no. 3. — P. 1444–1457. — DOI: 10.1137/130929345. — MathSciNet: MR3257645. , .
- Mirror Descent and Constrained Online Optimization Problems // Communications in Computer and Information Science. — 2019. — V. 974. — P. 64–78. — Optimization and Applications. 9th International Conference OPTIMA- 2018 (Petrovac, Montenegro, October 1–5, 2018). Revised Selected Papers. — DOI: 10.1007/978-3-030-10934-9_5. , , , .
- Online Convex Programming and Generalized Infinitesimal Gradient Ascent / Proceedings of International Conference on Machine Learning (ICML). — 2003. .
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"
Copyright © 2009–2024 Институт компьютерных исследований