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3amavua BEITYKION OHJIAHH-ONTUMH3AINN €CTECTBCHHO BO3HUKAIOT B CIIydyasX, KOTJIa MMEET MECTO OOHOB-
JICHUs CTaTUCTUIecKor nH(opMarwu. [ 3a1a4 HertaIKoW ONTUMH3AIU XOPOIIIO U3BECTEH METOJ 3¢PKAITLHOTO
CIycKa. 3epKalbHBIA CITyCK — ATO pacIIUpeHune CyOrpagueHTHOTO METOa JJIs PelIeHUs] HeTJIaJAKHX BBIMYKIIBIX
3a/1a4 ONTUMU3AIMU Ha CITydail HeeBKHIOBA paccTosiHUsA. PaboTa MoCBsImeHa CTOXaCTHYECKUM aHaJloraM HeaB-
HO TPENJIOKEHHBIX METOAOB 3€PKaJbHOTO CITyCKa JJIsl 3a/1a4 BBIMYKJIONW OHJIAMH-ONTHUMU3AINKU C BBIMYKJIBIMUA
JIUIIIAIEBBIMA (BOOOIIE TOBOPS, HEIVIAKUMHK) (PYHKIIHOHAIBHBIMI OTPAHUYCHUSIMHA. DTO O03HAYAELT, YTO BMECTO
(cy0)rpamuenTta neneBoro (QyHKIHOHANA W (DYHKIMOHAIBHOTO OTPAHMYEHUS MBI HCIOJB3YeM HX CTOXaCTHYEC-
ckue (cyO)rpagaueHTsl. TouHee TOBOpS, IOIMMyCTUM, YTO Ha 3aMKHYTOM ITOJMHO)KECTBE N-MEPHOTO BEKTOPHOTO
MPOCTPAHCTBA 3aJ1aH0 N BBIMYKIIBIX JIMMIIUIEBRIX HETIAIKAX (YHKIMOHAIOB. PaccmarpuBaeTcs 3ajada MHHU-
MU3AIUN CPEIHETO apu(PMETHIECKOTO ITUX (PYHKIIMOHATIOB C BBHIMYKJIBIM JIMIIIHAIEBEIM orpanmdeHuemM. [Ipen-
JIOKEHBI JTBA METOJIA JIIsl PEIICHUS ATOH 3a/1au C UCIIOJIb30BAHUEM CTOXAaCTUYECKHX (CyO)rpaucHTOB: aJarTHB-
HBII (He TpeOyeT 3HaHUS KOHCTaHT Jlummwuia Hu JUIs HeNeBoro (pyHKIMOHAA, HU JUI1 OTPAaHUYCHHS), a TAKKe
HeaaNTUBHBIN (TpeOyeT 3HaHUs KOHCTAaHTHI Jlummmia /s neneBoro (pyHKIMOHANa U orpaHndeHus). OTMETHM,
YTO pa3penieHo BBIYHUCIATh CTOXAaCTHUECKHH (Cy0)rpaJieHT KaI0To 1esieBOro (DyHKITMOHAIA TOIBKO OJHMH pa3.
B ciiyyae HeoTpUIIATENIBHOTO perpeTa Mbl HAXOAUM, YTO KOJMYECTBO HEMPOAYKTUBHBIX I1aroB paBHo O(N), uto
YKa3bIBa€T Ha ONTUMaJIbHOCTh MPEIJIOKEHHBIX METO/IOB. MBI paccMarpuBaeM MPOU3BOJIBHYIO MPOKC-CTPYKTYPY,
YTO CYLIECTBEHHO AJISl 3ajay NPUHATHUS perieHui. [IpuBeneHbl pe3yapraTel YHCIASHHBIX SKCIIEPUMEHTOB, M03BO-
JSAIOIINE CPAaBHHUTH PabOTy aJaliTUBHOTO M HEAANTUBHOTO METOJOB JUISI HEKOTOPHIX mpuMepoB. [Tokasano, 4to
aJIaNTUBHBIM METOJ] MOXET MO3BOJMUTH CYLUIECTBEHHO YAYUYIIUTh KOJIMYECTBO HAMIEHHOTO pELIeHMS.

KiroueBble ciioBa: 3aaya BBIIYKIOW OHJIAH-ONTUMM3AIMK, HETIagKas 3a/ada YCIOBHOW ONTHMM3AIHH,
a/IaNITUBHBIN 3epKaJIbHBIN CIYCK, JIMITIINIEB (yHKIHMOHAJ, CTOXaCTUYECKHH (CyO)rpaaneHT
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The problem of online convex optimization naturally occurs in cases when there is an update of statistical
information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent
is an extension of the subgradient method for solving non-smooth convex optimization problems in the case
of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent
methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional
constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient
of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely,
assume that on a closed subset of n-dimensional vector space, N convex Lipschitz non-smooth functionals are
given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint.
Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not
require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint)
and non-adaptive method (requires knowledge of Lipschitz constant for the objective functional and the functional
of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the
case of non-negative regret, we find that the number of non-productive steps is O(N), which indicates the
optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decision-
making problems. The results of numerical experiments are presented, allowing to compare the work of adaptive
and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve
the number of the found solutions.
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1. Introduction

Via its powerful modeling capability for a lot of problems from diverse domains, online convex
optimization (OCO) has become a leading online learning framework in recent years. For example,
selection for search engines and spam filtering can all be modeled as special cases. OCO plays a key
role in solving the problems where statistical information is being updated [Hazan, Kale, 2014; Hazan,
2015]. There are a lot of examples of such problems, concerning internet network, consumer data
sets or financial market, and in machine learning applications such as adaptive routing in networks
and online display advertising [Jenatton et al., 2015; Awerbuch, Kleinberg, 2008], online regression,
online ranking, online shortest paths, and portfolio selection. See [Hazan, Kale, 2014; Hazan, 2015]
for more applications and background. In OCO, the convex set is known in advance, but in each step
of some repeated optimization problem, one must select a point in this convex set before seeing the
objective function for that step. This can be used to model factory production, farm production, and
many other industrial optimization problems where one is unaware of the value of the items produced
until they have already been constructed [Zinkevich, 2003]. In an online decision problem, one has
to make a sequence of decisions without knowledge of the future. The problem of prediction from
expert advice is a special case of OCO in which the decision set is the unit simplex [Hazan, 2015;
Kalai, Vempala, 2005]. In each period, we select one expert and then observe the cost lie on the unit
simplex for each expert. Our goal is to minimize the arithmetic mean of costs from the point of view
of all experts. In recent years, methods for solving online optimization problems have been actively
developed [Bubeck, Eldan, 2015; Bubeck, Cesa-Bianchi, 2012; Gasnikov et al., 2015; Gasnikov et al.,
2017; Hazan, Kale, 2014; Hazan, 2015; Jenatton et al., 2015; Lugosi, Cesa-Bianchi, 2006]. In [Titov
et al., 2019] two methods (adaptive and non-adaptive) were proposed to solve the online optimization
problem, with functional constraints, for an arbitrary prox-structure.

In problems of OCOQO, it is required to minimize the sum (or the arithmetic mean) of several
convex Lipschitz functionals f; (i = 1, N) given on some closed set Q C R”.

1 & ,
N 2,50~ mi. M
s.t. g(x) <0.

This paper is devoted to a stochastic variant of optimal adaptive and non-adaptive methods
(see [Titov et al., 2019], Algorithms 1 and 2), for the randomized version of the type of problem (1).
This means that we can still use the value of the function g(x), but instead of (sub)gradient of f;,
i = 1,N and g, we use their stochastic (sub)gradients V f;(x, &), Vg(x, ¢), where &, ¢ are random vectors.
It should be noted that it is possible to calculate the stochastic (sub)gradient of each functional f; only
once.

We assume that f; and g are Lipschitz functionals, i.e. there exists a number M > 0, such that

lg(x) — g < Mllx = yl,

L 2
lfi(x) = fiwl < Mllx =yl Vi=1,N.

The optimization problems of non-smooth functionals with constraints frequently appear in huge-
scale problems and their applications [Ben-Tal, Nemirovski, 1997; Shpirko, Nesterov, 2014]. For
solving this kind of problems, there are several methods, such as bundle-level method [Nesterov,
2004], Lagrange multipliers method [Boyd, Vandenberghe, 2004] and Mirror Descent method, which
originated in [Nemirovski, 1979; Nemirovsky, Yudin, 1983] and was later analyzed in [Beck, Teboulle,
2003]. Mirror Descent method is considered as the non-Euclidean extension of subgradient methods,
which are considered in [Shor, 1967] for deterministic unconstrained problems and Euclidean setting,
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208 M. S. Alkousa

and for constrained problems in [Polyak, 1967]. An extension of the Mirror Descent method for
constrained problems was proposed in [Nemirovsky, Yudin, 1983; Beck et al., 2010].

Usually, the step size and stopping rule for Mirror Descent requires to know the Lipschitz
constant of the objective function and constraint, if any. Adaptive step sizes, which do not require
this information, are considered for unconstrained problems in [Ben-Tal, Nemirovski, 2001], and
in [Beck et al., 2010] for constrained problems. In [Bayandina et al., 2018b] proposed some optimal
Mirror Descent algorithms, for Lipschitz functional constraints problems with both adaptive step sizes
and stopping rules. Also, there were considered some modifications of these methods for the case
of problems with many functional constraints in [Stonyakin et al., 2018]. For OCO problem with
constraints, in [Jenatton et al., 2015] authors considered adaptive algorithms, but with only standard
Euclidean prox-structure. In [Hao et al., 2017] authors proposed an algorithm for OCO with stochastic
constraints, where the objective functional varies arbitrarily but the constraint functionals are varying
independently and identically distributed (i.i.d.) over time. In this paper, the objective functional
and the constraint functionals are arbitrarily varying, but instead of calculating their (sub)gradient
we calculate their stochastic (sub)gradient, which is very effective and requirable in huge-scale
optimization problems.

In this paper, we propose adaptive and non-adaptive stochastic algorithms for solving the
randomized version of the problem (1). We consider arbitrary proximal structure. The paper consists of
an Introduction and four main sections. In Section 2 we give some basic notation concerning convex
optimization problems with functional constraints and online optimization problems. In section 3 we
propose a non-adaptive stochastic algorithm of Mirror Descent for the randomized considered online
optimization problem (1). Section 4 is devoted to an adaptive analog of this method (Algorithm 2).
In the last section, we consider some numerical experiments that allow us to compare the work of
Algorithms 1 and 2 for certain examples.

2. Problem Statement and Standard Mirror Descent Basics

Let (E,]|| - |) be a normed finite-dimensional vector space and E* be the conjugate space of E
with the norm:

Iyl = m;lx{<y, x), |lxl] < 1},

where (y, x) is the value of the continuous linear functional y at x € E.
Let Q C E be a (simple) closed convex set, d : Q — R be a distance generating function (d.g.f.),
which is continuously differentiable and 1-strongly convex with respect to the norm || - ||, i.e.

1
Yx.y € Qi d(y) 2 d(x) +{Vd(x),y - x) + 7lly - P,

and assume that miél d(x) = d(0). Suppose, we have a constant ®q such that d(x,) < @2, where x, is
XE

a solution of (1).
Note that if there is a set of optimal points for (1) X, c Q, we may assume that

min d(x,) < ©3. 3

Xy €EXx

For all x,y € Q C E consider the corresponding Bregman divergence

Vi(y) = d(y) — d(x) — (Vd(x),y — x).
We also assume that we know a constant ®; > 0 such that

sup Vi(y) < ®(2). “4)
x.yeQ
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Standard proximal setups, i.e. Euclidean, entropy, ¢;/¢{;, simplex, nuclear norm, spectahedron can be
found, e.g. in [Ben-Tal, Nemirovski, 2001]. There are well-known examples of distance generating
functions, let us denote £, norm by ||x]|,,, and the standard unit simplex in R" by

Sa(l) = {x eRL| Y xi= 1}.
i=1

Consider two cases.

e Entropy proximal function. If p = 1, then over any O € §S,(1)

n

dx) =) xlnx, Vi) = ;yk ln(i—i). (5)

k=1

e Standard Euclidean proximal function. If p = 2, then over every Q
d(x) = %nxui, Vi(y) = %nx—yné. (6)
For all x € Q, and p € E*, the proximal mapping operator (Mirror Descent step) is defined as
Mirr,(p) = arg ‘Jéi(‘} {p,uy + Vi(w)}.

We make the simplicity assumption, which means that Mirr,(p) is easily computable.

Now, for the randomized version of the problem (1), we introduce the following assumptions
(see [Bayandina et al., 2018b]). Given a point x € Q, we can calculate the stochastic (sub)gradients
Vfi(x,&), i =1,N; Vg(x, ), where & ¢ are random vectors. These stochastic (sub)gradients satisfy

E[Vfi(x,&)] = Vfi(x) € 0fi(x) (i = LN),  E[Vg(x,{)] = Vg(x) € dg(x), (7)

and
VA O <M (=1,N), |IVgx,Ol <M,  as.in&. ®)

To motivate these assumptions, we consider, in the standard unit simplex, the following problem
(see [Bayandina et al., 2018b])

1
fx) = §<Ax, Xy — ngliI(ll)’

s.t. g(x) = max{(c;, x)} <0,
i=1,m
where A is a given n X n matrix and ¢; (i = 1, m) are given vectors in R”.

The exact computation of the gradient Vf(x) = Ax takes O(n?) arithmetic operations, which
is bad for huge-scale optimization problems, where n is large. In this setting, it is natural to use
randomization to construct a stochastic approximation for V f(x). Let £ be a random variable taking its
values in {1,...,n} with probabilities (xi,..., x,) respectively. Let A denote the i-th column of the
matrix A. Since x € §,(1),

E[A) = ADPE =) +... + AP =n) =
S———— S————
X1 Xn

=AVx +... + A"y, = Ax.

Thus, we can use A? as a stochastic subgradient of f, which can be calculated in O(n) arithmetic
operations.

The following well-known lemma describes the main property of the proximal mapping operator
(see, e.g. [Ben-Tal, Nemirovski, 2001; Bayandina et al., 2018b]).
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210 M. S. Alkousa

Lemma 1. Let f: QO — R be a convex subdifferentiable function over the convex set Q and
7= Mirry(hV f(y,&)) for some h >0, y,z € Q and & random vector. Then for each x € Q

h2
h(fO) = f0) < SV OIF + Vy(x) = Vo(x) + BV f (3, €) = V(). y = X).

3. Non-Adaptive Stochastic Algorithm for Constrained Online
Optimization Problems

Let I, J denote the set of indexes of productive and non-productive steps, respectively. N; denote
the number of non-productive steps.

In this section, we consider the stochastic version of the Non-Adaptive Mirror Descent Algorithm
1 in [Titov et al., 2019], for the randomized version of the problem (1), with a constant step, which
depends on the Lipschitz constant M. The proposed algorithm will work until there are exactly N
productive steps and in each step the stochastic (sub)gradient of exactly one functional of the objectives
is calculated. As a result, we get a (random) sequence {x*)es on productive steps, which can be
considered as a solution to the randomized version of the problem (1), with accuracy ¢ (see (9)).

Denote

(VK € = V(b % — x,), ifkelTandi=1,N,
(Vg(x¥, 75 = Vg(xb), x¥ — x,), ifke J.

Algorithm 1. Non-Adaptive Stochastic Online Mirror Descent Algorithm
Require: ¢, M, N, @y, O,d(-), X0,

1:i:=1, k:=0;

2: repeat

3. if g(x) < & then

4: h= %;

5 A= Mirr i (hV (XK, £)); "productive steps"
6: i=i+1;

7: k:=k+1;

8. else

9: h= %;
10: A= Mirr .« (hVg(x*, £%)); "non-productive steps"
11: k=k+1;
12:  end if

13: until i = N + 1
14: Guaranteed accuracy:
e M@} &N,

T2V TN TN ®
By Lemma 1, with y = xX, z = x¥**!, x = x, and by (8), we have for all k € I
) = gt < w2 o LR B0 gk v, A (10)
By the definition of stepsize h, we can rewrite (10) to get
F) = ity < 5 + P BB 9k g 9, - x) (n
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the same for all k£ € J, we have
e Vilxy) Vaa(x)
8*) — gx) < 5 4 =S - S 4 (Ve(h £ - V), o — ). (12)

Taking summation, in each side of (11) and (12), over productive and non-productive steps, we get

Z(ﬁ(x") File) + Y (5) = gx) € SV +Np) +
i=1 keJ
2 N+N;—1

N+N;—1
+— Z (Vi (xi) = Vgt (x0)) + ; Op.

Using (4) and because for k € J we have g(x) — g(x.,) > g(x*) > &, we get

N P MZ@% P N+N;—-1
D O = fiw) S SN+ —=L = SN+ ) 6 (13)
i=1 k=0

Dividing each side of (13) by N, using (9), and by taking the expectation, we obtain

N+Nj—
Zfl(x)} m1n—Zf,(x)<6+ Z [ ]

N+Nj—

But Z E [N] 0 (see [Bayandina, 2017]). Thus

1 & N ul
E N;fx >}—N;fi(x*>sd

(14
From (14) we have
M202
M-®; &N
k J
;f,(x )} lZ‘f,(x*) < N6 = §N+ - (15)
If we assume the nonnegativity of the regret (i.e. the left side in (15)) and
C
0Le= for some C > 0 (16)
N
then we get
2M2®2 2@2
OSN+—2- NJ_N+ ON - Ny,
&
then

2M*0;
Ny <N\ 1+ ——=|~ OW).
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Thus, we have the following result

Theorem 1. Suppose Algorithm 1 works exactly N productive steps. After the stopping of the
Algorithm 1, the following inequality holds:

N N
>, fi(x")} - > fx) <6
i=1 i=1

E

For the case (16) and
E

N ) 1 N
;ﬁ(x >}—rxglgﬁ;ﬁ<x>zo

2M?0F
N-|1+
C2

there will be no more than

]~ O(N) a7

non-productive steps.

4. Adaptive Stochastic Algorithm
for Constrained Online Optimization Problems

In this section, we consider the stochastic version of the Adaptive Mirror Descent Algorithm 2
in [Titov et al., 2019], for the randomized version of the problem (1). The proposed algorithm will
work until there are exactly N productive steps. As a result, we get a (random) sequence {x*}re; on
productive steps, which can be considered as a solution to the randomized version of the problem (1),
with accuracy ¢ (see (18)).

Algorithm 2. Adaptive Stochastic Online Mirror Descent Algorithm
Require: &, N, ®, 0,d(-), x°.

1. i:=1, k:=0;

2: repeat

3 if g(xk) < ¢ then
My = 119 fie, €Ol

k -1/
5: h. = Oy (z Mf) ;
=0

»

6: A= Mirr o (g V fi(x*, €%)); "productive steps"
7: i:=i+1;
8: ki=k+1;
9: else
10: My = ||Vg<x",§k)||7;
11: hk:®O(ZMz2) 5
=0
12: A= Mirr (g Vg(x*, £5)); "non-productive steps”
13: k=k+1;
14: end if

15: until i = N + 1
16: Guaranteed accuracy:

N+N-1 /2
20, ) N,
5= =20 M| - L 18
N ; ’] N (18)
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By Lemma 1, with y = xX, z = X**1, 1 = by, x = x, we have for all k € |

h2
i (FiG) = £iCx) < SFIVAGE ENE + Via () = Vi () + (VLG E9 = VG, =) (19)

and, for all k € J, we have

h2
i (02 = 8(x)) < VR EOIE + Via () = Vi () + Vg4, ) = V(). 2 — ). (20)

Dividing each inequality, (19) and (20), by h; and taking summation over productive and non-
productive steps, we obtain

N+N;—1 kM2 N+N;—1 N+N;—1
Z () = fie) + )" (g0 —ge)) < Y7 —++ Z 7 (Vi) = Vi () + Z .
kel k=0 k=0
Using (4),
N+N; -1 1 NNg=2p 1
k; —(Va(x) = Vi (1)) = %on(x*) + kZ{ [(hk+1 - h—k)vxk+.(x*) o vxk(x*)] <
02 N N 2
B
h 0 hk+] hk hN+Nj—l
Whence, by the definition of stepsizes /Ay,
N+N;-1 @0 M]% N+N;-1 1/2 N+Nj-1
Z(fz(x) f(x*))+Z(g(xk) g(x,)) < Z 7](—21/2+®0[ Z M/f} + Z O <
keJ k=0 (Z =0 Mj) =0 k=0
N+Ny-1 12 Ninj-1
32®0[ > M,f) +
k=0 k=0
where we used the inequality
N+Ny-1 e N+N;-1 172
k 2
Z P 21/232[2 Mk} )
k=0 (Z =0 Mj) k=0
which can be proved by induction. Since, for k € J, g(x*) — g(x,) > g(x*) > &, we get
N N+Ny—1 12 NeNy-
DA = ) <sN—s(N+NJ)+2®o[ > } Z 5. 1)
i=1 i=0
Dividing each side of (21) by N, using (18) and by taking the expectation, we obtain
N+N;—1 (S
k
Zf,(xk)] mm—Zf,(x) <5+ Z E[ ]
Thus
1 & 1 <&
E|x D fi(x")} - 2 fi) <6 @2)
i=1 i=1
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From (22) we have
N N N+N;—1 172
E|Y f,-(xk)] - D fix) <Ns =20| > M?] — &Ny + N) + &N. (23)
i=1 i=1

i=0

If we assume the nonnegativity of the regret (i.e. the left side in (23)) and the accuracy is given by (16),
we can get

N+N;—1 172
&N +N)) < 8N+2®0[ > M,.Z) < &N +2MOy /N + N,
i=0
N < AMPOJ(N + N;)  4MP@(N + N)N
J = 2 - 2 '
P> C
Further, 5
2 Ny 202
N (®) L a8,

N2+NN;  1+% 7 ¢
and N; = O(N). Thus, we have come to the following result.

Theorem 2. Suppose Algorithm 2 works exactly N productive steps. After the stopping of the
Algorithm 2, the following inequality holds:

IR | 1 &
’ N ;ﬁ(Xk)_ TN ; fix) < 6.

For the case of (16) and

[ N ] N
1 ) 1
E N;ﬁ(x) —%N;ﬁ(x)zo

there will be no more than O(N) non-productive steps.

REMARK 1. In the case of negative regret (see [Titov et al., 2019]), i.e. the left side in (15) and (23)

is ne gatlve note that the set of productive steps is not empty, because for arbitrary p steps when the inequality
p

> 2 js satisfied, one of these p steps will necessarily be productive. If all the other p—1 steps are non-
g2

Iy
k=1 Mk
o : , 51 20} 2M*O}
productive (without loss of generality, let the last step be productive), then Z — <—7,andp-1< -
& &
k=1 "k
2M?O]

0 non-productive steps, i.e. the

Between each two successive productive steps there will be no more than

202

S0 , e

N. Therefore, as previous for € = — there
N

&2

number of all non-productive steps will be no more than 5
e

will be no more than
2M2®2 5
ON = O(N9)

non-productive steps.

5. Numerical Experiments

To compare Algorithms 1 and 2, some numerical tests were carried out. Consider different
examples with objective functional

N
1
f0) = 5 ) Kainx) ~ bil: a; e R, bi € .
i=1
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1
Which is Lipschitz-continuous functional with constant M; = N Z lla;|l>. For the coefficients a; and

constants b; for i = 1, ..., N, with different values of N. Let A € RN XZ] be a matrix with entries drawn
from different random d1str1but10ns. Then aiT are rows in the matrix A’ € R¥*20 which is obtained
from A, by eliminating the last column, and b; are the entries of the last column in the matrix A. In
details, entries of A are drawn:

e when N = 10000, from a normal (Gaussian) distribution with mean (center) equaling 0 and
standard deviation (width) equaling 1;
e when N = 20000, from a uniform distribution over [0, 1);

e when N = 30000, from the standard exponential distribution with a scale parameter of 1;

e when N = 40000, from a Gumbel distribution with the location of the mode equaling 1 and the
scale parameter equaling 2;

e when N = 50000, from the discrete uniform distribution in the half open interval [1, 11). These
entries are integers in [1, 10].

For the functional of constraints g(x) = max{g;(x)}, we take m = 10 and the functionals
i€l,m

gi(x) = {a;, x), where a/l.T are the rows of the matrix

-5 -4 -2 2 7 9 9 1 -1 9 -5 -5 -l 2 4 -8 3 -10 -8 2
-4 -3 2 -2 -3 5 o 8 2 -7 -3 2 5 4 =7 7 9 -7 -10 4
3 -3 -4 -10 -1 8 7 -6 -4 4 6 -6 -10 -5 5 8 -1 9 7 7
-2 2 =10 7 6 -1 -7 3 -6 -7 -10 -4 7 9 -1 -8 -6 -6 -6 9
-8 3 0 3 -6 2 2 -6 -3 -7 6 6 -10 5 2 -10 -10 -4 -5 1
-4 1 -2 =5 7 1 4 -1 7 8§ -3 2 =2 1 9 4 7 -1 9 5
-6 7 4 9 1 -10 -2 6 7 -1 3 8 -9 -3 - 8 3 =7 9 4
3 -9 -6 -2 -5 =2 -7 1 4 8 1 -5 -1 -6 5 3 -10 9 -10 9
-3 -8 -4 3 -7 -10 -9 8 -2 2 8 -9 -5 5 4 -10 -4 -6 1 5
-2 1 6 -2 2 1 4 -8 9 -1 -10 6 -4 4 -10 2 -7 -4 -7 8

The functional g is Lipschitz-continuous with constant M, = max{[e;l>}. In Algorithm 1 we

i€1,10
take M = max{My, M,}. We choose the standard Euclidean proximal setup (see (6)), starting point
0 (,1,...,D 1 20,2 2 2
X = ——, &= —, 0 ={x = (x,x,...,x0) € RY|x7 + x5 +... + x5, < 1}. For any
m 1 2 20

x=(x1,...,x0) and y = (y1,...,y20) in Q, the following inequality holds
1 » |1 2 2 2 2
E||x—y||2=Ekzz;(xk—yk) SO 4 A F Y Y <2

Therefore, we can choose g = V2.

The results of the work of Algorithms 1 and 2, are represented in Table 1 below. The number
of non-productive steps is denoted by nonprod., time is given in seconds and parts of the second,
¢ is guaranteed accuracy of the solution approximation found (sequence {x*)1es on productive steps).

All experiments were implemented in Python 3.4, on a computer fitted with Intel(R) Core(TM)
17-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s). RAM of the computer
is 8 GB.

From Table 1 one can see, that the adaptive Algorithm 2 always works better than non-adaptive
Algorithm 1. It is clearly shown in all experiments by the number of non-productive steps, the running
time of the algorithms and guaranteed accuracy &, where the number of the non-productive steps
and ¢ obtained by Algorithm 2 are very small compared to the Algorithm 1.
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Table 1. Results of Algorithms 1 and 2

Algorithm 1 Algorithm 2

N nonprod. | time 0 nonprod. | time 0
10000 | 30866 | 05.685 | 16.729 392 01.026 | 0.042
20000 | 43810 | 08.137 | 11.833 248 01.894 | 0.018
30000 | 54005 | 10.898 | 9.662 943 03.064 | 0.028
40000 | 63171 | 13.238 | 8.368 2759 | 04.667 | 0.051
50000 | 71757 | 14.970 | 7.485 4398 | 05.615| 0.080

6. Conclusions

In this work, two methods with the explicit form of steps, adaptive and non-adaptive, were
proposed to solve the randomized version of the online optimization problem for an arbitrary proximal
structure. The objective functional and the constraint functionals are arbitrarily varying, but instead of
calculating their (sub)gradient we calculate their stochastic (sub)gradient, which is very effective and
requirable in huge-scale optimization problems and their applications related to the Internet, machine
learning and others. Furthermore, it has been proved that the number of non-productive steps is O(N),
in the case of non-negative regret. The future work, in connection with this work, implies considering
a modification of the proposed adaptive algorithm for the case of a set of functional constraints, which
make it possible to reduce the running time of the algorithm.

Acknowledgment. The author is very grateful to Alexander V. Gasnikov, Fedor S. Stonyakin
and Alexander G. Biryukov for fruitful discussions.
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