Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Современные методы математического моделирования кровотока c помощью осредненных моделей
Список литературы:
- Математическое моделирование кровообращения на основе программного комплекса CVSS / В сб. Компьютерные модели и прогресс медицины. — М: Наука, 2001. — С. 194–218.
- Mathematical modelling of blood circulation based on CVSS software / Computer models and medicine progress. — Moscow: Nauka, 2001. — P. 194–218. — in Russian. — MathSciNet: MR1887266. , , , , , , , .
, , , , , , , . - Численное решение задачи гемодинамики методом прямых и методом ортогональной прогонки. — Новосибирск: ИЯФ, 2009. — С. 35.
- Numerical solution of the task of haemodynamics by the methods of lines and orthogonal crout algorithm. — Novosibirsk: INP, 2009. — P. 35. — in Russian. , .
, . - О механизме генерации звуков Короткова // ДАН СССР. — 1980. — Т. 251, № 3. — С. 570–574.
- Mechanism of generation of Korotkov sounds // Soviet Physics Doklady. — 1980. — V. 25. — P. 177. — ads: 1980SPhD...25..177G. , , .
, , . - О причинах возникновения «бесконечного» тона Короткова // ДАН СССР. — 1981. — Т. 259, № 4. — С. 739–740.
- On the origin of “infinite” Korotkov tones // Soviet Physics Doklady. — 1981. — V. 26. — P. 739–740. — ads: 1981SPhD...26..739G. , , .
, , . - Численное исследование динамики системного кровотока при кровопотере // Информационные технологии моделирования и управления. — 2006. — Т. 8, № 33. — С. 931–938.
- Computational simulation of the systemic haemodynamics during hemorrhage // Informational technologies. — 2006. — V. 8, no. 33. — P. 931–938. — in Russian. — ads: 2006mdxi.book.....S. .
. - Численный анализ воздействия акустических возмущений на функцию легких и гемодинамику малого круга кровообращения / Медицина в зеркале информатики: сборник. — М: Наука, 2008. — С. 124–144.
- Computational analysis of acoustical impacts to the lungs function and pulmonary circulation / Medicine in the mirror of informatics: sbornik. — Moscow: Nauka, 2001. — P. 124–144. — . — in Russian. , .
, . - Методы расчета глобального кровотока в организме человека с использованием гетерогенных вычислительных моделей / Медицина в зеркале информатики: сборник. — М: Наука, 2008. — С. 145–170.
- The methods of computation global blood flow in the human organism using heterogenous computational models / Medicine in the mirror of informatics: sbornik. — Moscow: Nauka, 2001. — P. 145–170. — in Russian. , , .
, , . - Разностные схемы для решения жестких обыкновенных дифференциальных уравнений в пространстве неопределенных коэффициентов. — М: МФТИ, 1985. — С. 49.
- Numerical schemes for solving stiff ordinary differential equations in the space of undetermined coefficients. — Moscow: MFTI, 1985. — P. 49. — in Russian. , , .
, , . - Некоторые динамические модели внешнего дыхания и кровообращения с учетом их связности и переноса веществ / Компьютерные модели и прогресс медицины: сборник. — М: Наука, 2001. — С. 127–163.
- Some dynamical models of multi-dimensional problems of respiratory and circulatory systems including their interaction and matter transport / Computer models and medicine progress: sbornik. — Moscow: Nauka, 2001. — P. 127–163. — in Russian. .
. - Квазистационарная пространственно распределенная модель замкнутого кровообращения организма человека / Компьютерные модели и прогресс медицины: сборник. — М: Наука, 2001. — С. 164–193.
- Pseudo-steady distributed model of closed circulation in human organism / Computer models and medicine progress: sbornik. — Moscow: Nauka, 2001. — P. 164–193. — in Russian. , .
, . - Mathematical model for hemodynamics of cardiovascular system // Differential equations. — 1997. — V. 33, no. 7. — P. 892–898. — Math-Net: Mi eng/de9478. — MathSciNet: MR1615495. , , , , , , , , .
- Strategy of mathematical cardiovascular system modeling // Matematicheskoe modelirovanie. — 2000. — V. 12, no. 2. — P. 106–117. — Math-Net: Mi eng/mm846. , , , , , , , , .
- Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models // International journal for numerical methods in fluids. — 2008. — V. 56, no. 8. — P. 1061–1067. — DOI: 10.1002/fld.1606. — MathSciNet: MR2393499. — ads: 2008IJNMF..56.1061A. , , , , , .
- Analysing the pattern of pulse waves in arterial networks: a time-domain study // Journal of engineering mathematics. — 2009. — V. 64, no. 4. — P. 331–351. — DOI: 10.1007/s10665-009-9275-1. — MathSciNet: MR2511989. — ads: 2009JEnMa..64..331A. , , , .
- Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements // Journal of biomechanics. — 2011. — V. 44, no. 12. — P. 2250–2258. — DOI: 10.1016/j.jbiomech.2011.05.041. , , , , , , , .
- Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels // Networks & Heterogeneous Media. — 2007. — V. 2, no. 1. — P. 99–125. — DOI: 10.3934/nhm.2007.2.99. — MathSciNet: MR2291814. , , .
- Modeling of Physiological Flows. — Springer Science & Business Media, 2012. — 418 p. , , .
- Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans // Hypertension. — 1995. — V. 26, no. 1. — P. 48–54. — DOI: 10.1161/01.HYP.26.1.48. , , , , , .
- Multi-branched model of the human arterial system // Medical & biological engineering & computing. — 1980. — V. 18. — P. 709–718. — DOI: 10.1007/BF02441895. .
- A theory of fluid flow in compliant tubes // Biophysical journal. — 1966. — V. 6, no. 6. — P. 717–724. — DOI: 10.1016/S0006-3495(66)86690-0. — ads: 1966BpJ.....6..717B. , , , .
- Methods of blood flow modelling // Mathematical modelling of natural phenomena. — 2016. — V. 11, no. 1. — P. 1–25. — DOI: 10.1051/mmnp/201611101. — MathSciNet: MR3452632. , , , , .
- A 3D-1D-0D Computational model for the entire cardiovascular system // Computational Mechanics. — 2010. — V. XXIX. — P. 5887–5911. — E. Dvorking, M. Goldschmit, M. Storti. , .
- An anatomically detailed arterial network model for one-dimensional computational hemodynamics // IEEE Transaction on Biomedical Engineering. — 2015. — V. 62, no. 11. — P. 736–753. — DOI: 10.1109/TBME.2014.2364522. , , , , .
- A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling // International journal for numerical methods in biomedical engineering. — 2015. — V. 31, no. 10. — e02732. — DOI: 10.1002/cnm.2732. — MathSciNet: MR3432650. , , , , , , , , , .
- One-dimensional modelling of the coronary circulation. Application to noninvasive quantification of fractional flow reserve (FFR) // Lecture Notes in Computational Vision and Biomechanics. — 2015. — V. 21. — P. 137–155. — DOI: 10.1007/978-3-319-15799-3_11. , .
- Conservative algorithm of substance transport over a closed graph of cardiovascular system // Russian journal of numerical analysis and mathematical modelling. — 2012. — V. 27, no. 5. — P. 413–429. — DOI: 10.1515/rnam-2012-0023. — MathSciNet: MR3034192. , , .
- Conservative schemes of matter transport in a system of vessels closed by the heart // Differential equations. — 2012. — V. 48, no. 7. — P. 919–928. — DOI: 10.1134/S0012266112070038. — MathSciNet: MR3180109. , , .
- Conditions of microvessel occlusion for blood coagulation in flow // International journal for numerical methods in biomedical engineering. — 2016. — V. 33, no. 9. — e2850. — DOI: 10.1002/cnm.2850. — MathSciNet: MR3697331. , , , , .
- Numerical experiment in hemodynamics // Differential equations. — 2004. — V. 40, no. 7. — P. 984–999. — DOI: 10.1023/B:DIEQ.0000047029.23374.8c. — MathSciNet: MR2157882. , , , .
- Studying the influence of gravitational overloads on the parameters of blood flow in vessels of greater circulation // Mathematical models and computer simulations. — 2013. — V. 5, no. 1. — P. 81–91. — DOI: 10.1134/S207004821301002X. — MathSciNet: MR3051810. , , , , .
- Predictor–corrector Obreshkov pairs // Computing. — 2013. — V. 95, no. 5. — P. 355–371. — DOI: 10.1007/s00607-012-0258-0. — MathSciNet: MR3048632. , .
- Computational phlebology: the simulation of a vein valve // Journal of biological physics. — 2006. — V. 32, no. 6. — P. 507–521. — DOI: 10.1007/s10867-007-9033-4. , .
- Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels // Mathematical Methods in the Applied Sciences. — 2003. — V. 26, no. 8. — P. 1161–1186. — DOI: 10.1002/mma.407. — MathSciNet: MR2002976. — ads: 2003MMAS...26.1161C. , .
- Modeling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow // SIAM Journal of applied mathematics. — 2006. — V. 67, no. 1. — P. 164–193. — DOI: 10.1137/060651562. — MathSciNet: MR2272619. , , , , , .
- Development and characterization of the arterial windkessel and its role during left ventricular assist device assistance // Artificial organs. — 2015. — V. 39, no. 8. — P. E138–E153. — DOI: 10.1111/aor.12532. .
- The Mechanics of the Circulation. — Cambridge University Press, 2012. — 2nd Edition. , , , .
- Relaxation oscillation model of hemodynamic parameters in the cerebral vessels // Journal of physics: conference series. — 2016. — V. 722, no. 1. — 012045. — DOI: 10.1088/1742-6596/722/1/012045. , , , , , .
- A Mathematical model for autoregulation of the arterial lumen by endotheliumderived relaxing factor // Advanced science letters. — 2008. — V. 1, no. 2. — P. 226–230. — DOI: 10.1166/asl.2008.024. , .
- A reduced model of pulsatile flow in an arterial compartment // Chaos Solitons & Fractals. — 2007. — V. 34, no. 2. — P. 594–605. — DOI: 10.1016/j.chaos.2006.03.096. — MathSciNet: MR2327436. — ads: 2007CSF....34..594C. , .
- Coupled autoregulation models in the cerebro-vasculature // Journal of engineering mathematics. — 2009. — V. 64. — P. 403–415. — DOI: 10.1007/s10665-009-9274-2. — MathSciNet: MR2511994. — ads: 2009JEnMa..64..403D. , , .
- Methods of graph network reconstruction in personalized medicine // International journal for numerical methods in biomedical engineering. — 2016. — V. 32, no. 8. — e02754. — DOI: 10.1002/cnm.2754. , , , .
- Multiscale coupling of compliant and rigid walls blood flow models // International journal for numerical methods in fluids. — 2006. — V. 82, no. 12. — P. 799–817. — DOI: 10.1002/fld.4241. — MathSciNet: MR3580957. — ads: 2016IJNMF..82..799D. , , .
- Patient-specific blood flow modelling for medical applications // MATEC Web of Conferences. — 2016. — V. 76. — 05001. — DOI: 10.1051/matecconf/20167605001. , , , , .
- Propagation of nonlinear pressure waves in blood // ISRN Computational biology. — 2008. — 436267. , , , .
- One-dimensional models for blood flow in arteries // Journal of Engineering Mathematics. — 2003. — V. 47. — P. 251–276. — DOI: 10.1023/B:ENGI.0000007980.01347.29. — MathSciNet: MR2038983. — ads: 2003JEnMa..47..251F. , , .
- Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart // Computer methods in biomechanics and biomedical engineering. — 2006. — V. 9, no. 5. — P. 273–288. — DOI: 10.1080/10255840600857767. , , , .
- Cardiovascular mathematics. — Heidelberg: Springer, 2009. — V. 1. — MathSciNet: MR2524089. , , .
- Forced Korteweg-de Vries-Burgers equation in an elastic tube filled with a variable viscosity fluid // Chaos solitons & fractals. — 2008. — V. 38, no. 4. — P. 1134–1145. — DOI: 10.1016/j.chaos.2007.02.005. — MathSciNet: MR2435609. — ads: 2008CSF....38.1134G. , .
- Patient specific haemodynamic modeling after occlusion treatment in leg // Mathematical modelling for natural phenomena. — 2014. — V. 9, no. 6. — P. 85–97. — DOI: 10.1051/mmnp/20149607. — MathSciNet: MR3264330. , , , , .
- Virtual fractional flow reserve assessment in patient-specific coronary networks by 1D hemodynamic model // Russian journal of numerical analysis and mathematical modelling. — 2015. — V. 30, no. 5. — P. 269–276. — DOI: 10.1515/rnam-2015-0024. — MathSciNet: MR3420391. , , , .
- One-dimensional mathematical model-based automated assessment of fractional flow reserve in a patient with silent myocardial ischemia // The American journal of case reports. — 2018. — V. 19. — P. 724–728. — DOI: 10.12659/AJCR.908449. , , , , , , , , , , .
- Mathematical modeling of blood flow alteration in microcirculatory network due to angiogenesis // Lobachevskii Journal of Mathematics. — 2016. — V. 37, no. 5. — P. 541–549. — DOI: 10.1134/S199508021605005X. — MathSciNet: MR3549482. , , , .
- Blood flow in microvascular networks: a study in nonlinear biology // Chaos. — 2010. — V. 20, no. 4. — 045123. — DOI: 10.1063/1.3530122. — MathSciNet: MR2791166. — ads: 2010Chaos..20d5123G. , , , , .
- Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model // Journal of biomechanics. — 2016. — V. 49, no. 9. — P. 1583–1592. — DOI: 10.1016/j.jbiomech.2016.03.037. , , .
- A new constitutive framework for arterial wall mechanics and a comparative study of material models // Journal of elasticity and the physical science of solids. — 2000. — V. 61, no. 13. — P. 1–48. — MathSciNet: MR1852945. , , .
- 2D computational model of blood circulation in organs coupled with the net model of large vessels / Proceedings of the 2005 Summer Bioengineering Conference. — 2005. — P. 59–60. , , , .
- Application of 1D blood flow models of the human arterial network to differential pressure predictions // Journal of Biomechanics. — 2011. — V. 44, no. 5. — P. 869–876. — DOI: 10.1016/j.jbiomech.2010.12.003. , , , , .
- Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models // Journal of physics conference series. — 2016. — V. 722, no. 1. — 012042. — DOI: 10.1088/1742-6596/722/1/012042. , , , , , .
- Matter transport simulations using 2D model of peripheral circulation coupled with the model of large vessels / Proceedings of II International conference on computational bioengineering. — 2005. — P. 479–490. , , , .
- Numerical simulation of peripheral circulation and substance transfer with 2D models / Mathematical biology: recent trends. — 2006. — P. 22–29. — Chandra P., Kumar R. , , .
- Monotonic difference schemes on irregular grids for elliptic equations in domains with multiple boundaries // Matematicheskoe modelirovanie. — 1991. — V. 3, no. 9. — P. 104–113. — Math-Net: Mi eng/mm2275. — MathSciNet: MR1157075. .
- Numerical models of human circulatory system under altered gravity: brain circulation / AIAA 42nd Aerospace Sciences Meeting and Exhibit. — 2004-1092. — Reno, NV, January 2004. , , .
- Review on lumped parameter method for modeling the blood flow in systemic arteries // Journal of biomedical science and engineering. — 2013. — V. 6. — P. 92–99. — DOI: 10.4236/jbise.2013.61012. , , .
- Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves // Journal of biomechanics. — 2006. — V. 39, no. 11. — P. 1964–1982. — DOI: 10.1016/j.jbiomech.2005.06.016. , .
- Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation // Matematicheskoe Modelirovanie. — 2007. — V. 19, no. 3. — P. 15–28. — in Russian. — Math-Net: Mi eng/mm933. , , , , .
- A Numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models // Computational and mathematical methods in medicine. — 2012. — 156094. — MathSciNet: MR2916781. , , , .
- Multiscale modeling of angiogenic tumor growth, progression and therapy // Biophysics. — 2016. — V. 61, no. 6. — P. 1042–1051. — DOI: 10.1134/S0006350916050183. , , , .
- HeMoLab — hemodynamics modelling laboratory: an application for modelling the human cardiovascular system // Computers in biology and medicine. — 2012. — V. 42. — P. 993–1004. — DOI: 10.1016/j.compbiomed.2012.07.011. , , , , , , .
- A closed-loop lumped parameter computational model for human cardiovascular system // JSME International journal: Series C. — 2005. — V. 48. — P. 484–493. — DOI: 10.1299/jsmec.48.484. — ads: 2005JSMEC..48..484L. , .
- Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system // Journal of physiological sciences. — 2006. — V. 56, no. 1. — P. 45–65. — DOI: 10.2170/physiolsci.RP001305. , .
- A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery // BioMedical Engineering OnLine. — 2011. — V. 10. — P. 84. — DOI: 10.1186/1475-925X-10-84. , , , .
- Functional assessment of cerebral artery stenosis: A pilot study based on computational fluid dynamics // Journal of the cereb blood flow & metabolism. — 2017. — V. 37, no. 7. — P. 2567–2576. — DOI: 10.1177/0271678X16671321. , , , , , , , , , , , , , , , .
- An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms // International journal of numerical methods in biomedical Engineering. — 2012. — V. 28. — P. 1224–1246. — DOI: 10.1002/cnm.2533. — MathSciNet: MR3002659. , , , , .
- A universal programmable fiber architecture for the representation of a general incompressible linearly elastic material as a fiber-reinforced fluid // Advances in applied mathematics. — 2009. — V. 43, no. 1. — P. 75–100. — DOI: 10.1016/j.aam.2009.01.004. — MathSciNet: MR2524179. , .
- Computational fluid dynamic simulation of the flow through venous valve / Clinical application of computational mechanics to the cardiovascular system. — Springer, 2000. — P. 186–189. , , .
- Numerical simulation of enhanced external counterpulsation // Annals of biomedical engineering. — 2001. — V. 29. — P. 284–297. — DOI: 10.1114/1.1359448. , , , .
- Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation // Journal of Biomechanics. — 2005. — V. 38, no. 5. — P. 1129–1141. — DOI: 10.1016/j.jbiomech.2004.05.027. , , , , , , .
- Analysis of lumped parameter models for blood flow simulations and their relation with 1D models // ESAIM: Mathematical modelling and numerical analysis. — 2004. — V. 38, no. 4. — P. 613–632. — DOI: 10.1051/m2an:2004036. — MathSciNet: MR2087726. , .
- A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method // Communications in numerical methods in engineering. — 2008. — V. 24, no. 5. — P. 367–417. — DOI: 10.1002/cnm.1117. — MathSciNet: MR2412048. , .
- Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties // Journal of computational physics. — 2013. — V. 242. — P. 53–85. — DOI: 10.1016/j.jcp.2013.01.050. — MathSciNet: MR3062024. — ads: 2013JCoPh.242...53M. , , .
- A global multiscale mathematical model for the human circulation with emphasis on the venous system // International journal for numerical methods in biomedical engineering. — 2014. — V. 30, no. 7. — P. 681–725. — DOI: 10.1002/cnm.2622. — MathSciNet: MR3232054. , .
- A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks // Journal of Biomedical Engineering. — 2014. — V. 136, no. 1. — 011009. — ads: 2014JBO....19a1009P. , , , , , , .
- Differential properties of Van der Pol – Duffing mathematical model of cerebrovascular haemodynamics based on clinical measurements // Journal of physics: conference series. — 2016. — V. 722, no. 1. — 012030. — DOI: 10.1088/1742-6596/722/1/012030. , , , , , , .
- Modelling flow and oscillations in collapsible tubes // Theoretical and computational fluid dynamics. — 1998. — V. 10, no. 1. — P. 277–294. — DOI: 10.1007/s001620050064. — ads: 1998ThCFD..10..277P. , .
- The fluid mechanics of large blood vessels. — Cambridge University Press, 1980. .
- Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions // Annals of Biomedical Engineering. — 2000. — V. 28. — P. 1281–1299. — DOI: 10.1114/1.1326031. — MathSciNet: MR2443016. , , , , , .
- Mathematical modelling and numerical simulation of the cardiovascular system. — Handbook of numerical analysis. — Elsevier, 2004. — V. 7. — MathSciNet: MR2087609. , .
- Reduced order methods for modeling and computational reduction. — Springer International Publishing, 2014. — MathSciNet: MR3236886. , .
- A novel method for non-invasively detecting the severity and location of aortic aneurysms // Biomechanics and modeling in mechanobiology. — 2017. — V. 16. — P. 1225–1242. — DOI: 10.1007/s10237-017-0884-8. , , , , , , , .
- Human Physiology. — Berlin: Springer-Verlag, 1989. — 2nd ed. , .
- One-dimensional modelling of a vascular network in spacetime variables // Journal of engineering mathematics. — 2003. — V. 47. — P. 217–250. — DOI: 10.1023/B:ENGI.0000007979.32871.e2. — MathSciNet: MR2038982. — ads: 2003JEnMa..47..217S. , , , .
- Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system // International journal for numerical methods in fluids. — 2003. — V. 43. — P. 673–700. — DOI: 10.1002/fld.543. — MathSciNet: MR2032856. — ads: 2003IJNMF..43..673S. , , , .
- Review of zero-D and 1-D models of blood flow in the cardiovascular system // Biomedical Engineering Online. — 2011. — V. 10, no. 33. , , .
- Mathematical modeling of cardiovascular system dynamics using lumped parameter method // Japanese journal of physiology. — 2004. — V. 54. — P. 545–553. — DOI: 10.2170/jjphysiol.54.545. , , .
- Computational study of oxygen concentration in human blood under low frequency disturbances // Mathematical models and computer simulations. — 2008. — V. 1, no. 2. — P. 283–295. — DOI: 10.1134/S2070048209020112. — MathSciNet: MR2423039. , .
- Computational study of blood flow in lower extremities under intense physical load // Russian Journal of Numerical Analysis and Mathematical Modelling. — 2013. — V. 28, no. 5. — P. 485–504. — DOI: 10.1515/rnam-2013-0027. — MathSciNet: MR3296417. , , .
- Computer simulation studies of the venous circulation // IEEE Transactions on Bio-Medical Engineering. — 1969. — V. 4. — P. 325–334. — DOI: 10.1109/TBME.1969.4502663. , .
- A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling // Am J Physiol Heart Circ Physiol. — 2012. — V. 303. — P. H1143–H1153. — DOI: 10.1152/ajpheart.00303.2012. , , , .
- A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions // Microvascular Research. — 2014. — V. 91. — P. 8–21. — DOI: 10.1016/j.mvr.2013.12.003. , , , .
- Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise // The journal of physiology. — 2003. — V. 550, no. 2. — P. 575–583. — DOI: 10.1113/jphysiol.2003.040147. , , , , .
- Computer simulation of arterial flow with applications to arterial and aortic stenoses // Journal of biomechanics. — 1992. — V. 25, no. 12. — P. 1477–1488. — DOI: 10.1016/0021-9290(92)90060-E. , , .
- A mathematical model of the cardiovascular system / Progress in industrial mathematics at ECMI 2002. — The european consortium for mathematics in industry. — 2004. — V. 5. — P. 381–385. , , .
- Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio // Circulation Research. — 1973. — V. 32, no. 3. — P. 314–322. — DOI: 10.1161/01.RES.32.3.314. , , .
- Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system // The journal of thoracic and cardiovascular surgery. — 2013. — V. 145, no. 5. — P. 1367–1372. — DOI: 10.1016/j.jtcvs.2012.07.029. , , , , , , .
- Models of ventricular contraction based on time-varying elastance // Critical Reviews in Biomedical Engineering. — 1982. — V. 7, no. 3. — P. 193–228. , .
- Pulse wave propagation in the arterial tree // Annual Review of Fluid Mechanics. — 2011. — V. 43, no. 1. — P. 467–499. — DOI: 10.1146/annurev-fluid-122109-160730. — MathSciNet: MR2768023. — ads: 2011AnRFM..43..467V. , .
- Numerical issues of modelling blood flow in networks of vessels with pathologies // Russian journal of numerical analysis and mathematical modelling. — 2011. — V. 26, no. 6. — P. 605–622. — MathSciNet: MR2913503. , , , , .
- Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall // Mathematical modelling of natural phenomena. — 2011. — V. 6, no. 5. — P. 333–349. — DOI: 10.1051/mmnp/20116513. — MathSciNet: MR2825232. , , , , .
- Vessel wall models for simulation of atherosclerotic vascular networks // Mathematical modelling of natural phenomena. — 2011. — V. 6, no. 7. — P. 82–99. — DOI: 10.1051/mmnp:20116707. — MathSciNet: MR2812641. , , , , .
- On the elasticity of blood vessels in one-dimensional problems of hemodynamics // Computational mathematics and mathematical physics. — 2015. — V. 55, no. 9. — P. 1567–1578. — DOI: 10.1134/S0965542515090134. — Math-Net: Mi eng/zvmmf10269. — MathSciNet: MR3396534. , , .
- Personalized anatomical meshing of human body with applications / Modeling the heart and the circulatory system. — Springer, 2015. — P. 221–236. , , , , .
- Wave propagation in a model of the arterial circulation // Journal of biomechanics. — 2004. — V. 37, no. 4. — P. 457–470. — DOI: 10.1016/j.jbiomech.2003.09.007. , .
- A systematic comparison between 1D and 3D hemodynamics in compliant arterial models // International journal for numerical methods in biomedical engineering. — 2014. — V. 30, no. 2. — P. 204–231. — DOI: 10.1002/cnm.2598. — MathSciNet: MR3164684. , , .
- Hemodynamic analysis of patient-specific coronary artery tree // International Journal for Numerical Methods in Biomedical Engineering. — 2015. — V. 31, no. 4. — e02708. , , , , , , , , , et al.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"
Copyright © 2009–2025 Институт компьютерных исследований