Все выпуски

Высокопроизводительные вычисления в моделировании крови

 pdf (720K)  / Аннотация

Список литературы:

  1. Ф.И. Атауллаханов, Е.С. Лобанова, О.Л. Морозова и др. Сложные режимы распространения возбуждения и самоорганизации в модели свертывания крови // Успехи физических наук. — 2007. — Т. 177, № 1. — 18 с.
  2. Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котофский и др. Гистология, цитология и эмбриология. — М: Медицина, 2002. — 744 с. — 5-е изд., перераб. и доп.
  3. Д.А. Бикулов, Д.С. Сенин, Д.С. Демин и др. Реализация метода решеточных уравнений Больцмана для расчетов на GPU-кластере // Вычислительные методы и программирование. — 2012. — Т. 13. — С. 13–19.
  4. Р. Галлагер. Метод конечных элементов. Основы. — пер. с англ. — М: Мир, 1984. — 428 с.
  5. Гемостаз. Физиологические механизмы, принципы диагностики основных форм геморрагических заболеваний. — СПб: Издательство СПбГМУ, 1999. — 115 с. — Под ред. Петрищева Н.Н., Папаян Л.П.
  6. Дж. Голуб, Ч. Ван Лоун. Матричные вычисления. — М: Мир, 1999. — 548 с.
  7. А.И. Грицюк, Е.Н. Мосова, И.А. Грицюк. Практическая гемостазиология. — Киев: Здоров’я, 1994. — 256 с.
  8. К. Каро, Т. Педли, Р. Шротер, У. Сид. Механика кровообращения. — М: Мир, 1981. — 607 с.
  9. Д.М. Климов, А.Г. Петров, Д.В. Георгиевский. Вязкопластические течения: динамический хаос, устойчивость, перемешивание. — М: Наука, 2005. — 394 с.
  10. Дж. Коннор, К. Бреббиа. Метод конечных элементов в механике жидкости. — Л: Судостроение, 1979. — 264 с.
  11. А.И. Лобанов. Модели клеточных автоматов // Компьютерные исследования и моделирование. — 2010. — Т. 2, № 3. — С. 273–293. — DOI: 10.20537/2076-7633-2010-2-3-273-293.
  12. П.В. Мазуров. Физиология и патология тромбоцитов. — М: Литтерра, 2011. — 456 с.
  13. В.Г. Мазья. Граничные интегральные уравнения / Анализ – 4. — Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления. — М: ВИНИТИ, 1988. — Т. 27. — С. 131–228.
  14. М.А. Пантелеев, Я.Н. Котова, А.А. Токарев и др. Механизмы регуляции свертывания крови // Терапевтический архив. — 2008. — № 7. — С. 88–91.
  15. М.А. Пантелеев, С.А. Васильев, Е.И. Синауридзе и др. Практическая коагулология. — М: Практическая медицина, 2011. — 192 с. — Под ред. Воробьева А.И.
  16. Р.П. Федоренко. Введение в вычислительную физику. — учеб. пособие: для вузов. — М: Изд-во Моск. физ.-техн. ин-та, 1994. — 528 с.
  17. P.A. Aarts, S.A. van den Broek, G.W. Prins, et al. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood // Arteriosclerosis. — 1988. — V. 8, no. 6. — P. 819–824. — DOI: 10.1161/01.ATV.8.6.819.
  18. J. Abel, K. Balasubramanian, M. Bargeron. Applications tuning for streaming SIMD extensions // Intel Technology Journal. — 1999. — V. Q2. — P. 1–13.
  19. C.K. Aidun, J.R. Clausen. Lattice-Boltzmann method for complex flows // Annual review of fluid mechanics. — 2010. — V. 42. — P. 439–472. — DOI: 10.1146/annurev-fluid-121108-145519. — MathSciNet: MR2647598. — ads: 2010AnRFM..42..439A.
  20. A.T. Barker, X. Cai. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling // Journal of computational physics. — 2009. — MathSciNet: MR2713045.
  21. J. Barnes, P. Hut. A hierarchical O(N logN) force-calculation algorithm // Nature. — 1986. — V. 324. — P. 446–449. — DOI: 10.1038/324446a0. — ads: 1986Natur.324..446B.
  22. H. Ba¨umler, E. Donath, A. Krabi, et al. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran // Biorheology. — 1996. — V. 33, no. 4–5. — P. 333–351.
  23. M. Bernaschi, M. Fatica, S. Melchionna. A flexible high performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries / Concurrency and Computation: Practice and Experience. — 2009.
  24. M. Bernaschi, S. Melchionna, S. Succi, et al. MUPHY: "A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations" // Computer physics communication. — 2009. — V. 180. — P. 1495–1502. — DOI: 10.1016/j.cpc.2009.04.001. — ads: 2009CoPhC.180.1495B.
  25. J. Bernsdorf, S.E. Harrison, S.M. Smith, et al. Applying the lattice Boltzmann technique to biofluids: A novel approach to simulate blood coagulation // Computers and Mathematics with Applications. — 2008. — V. 55. — P. 1408–1414. — DOI: 10.1016/j.camwa.2007.08.007. — MathSciNet: MR2406716.
  26. Blood: physiology and circulation. — Britannica educational publiching, 2011. — 239 p. — Edited by K.Rogers.
  27. K. Boryczko, W. Dzwinel, D.A. Yuen. Parallel implementation of the fluid particle model for simulating complex fluids in the mesoscale // Concurrency and computation: Practice and Experience. — 2002. — V. 14. — P. 137–161. — DOI: 10.1002/cpe.619.
  28. J. Boyd, J. Buick, S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model // Journal of physics A: Mathematical and General. — 2006. — no. 39. — P. 14241–14247. — DOI: 10.1088/0305-4470/39/46/001. — MathSciNet: MR2276212. — ads: 2006JPhA...3914241B.
  29. A. Chandramowlishwaran, S. Williams, L. Oliker, et al. Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures / Proceedings of IPDPS. — Atlanta, GA: IEEE Computer Society, 2010.
  30. H. Chen, S. Chen, W.H. Matthaeus. Lattice Boltzmann model for simulating flows with multiple phases and components // Physical review A. — 1992. — V. 45. — P. 5339–5342. — ads: 1992PhRvA..45.5339C.
  31. W. Chen, K. Ward, Q. Li, et al. Agent based modeling of blood coagulation system: implementation using a GPU based high speed framework / 33rd Annual International Conference of the IEEE EMBS Boston. — Massachusetts USA, 2011. — August 30 — September 3.
  32. C. Chevalier, F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering // Parallel Computing. — 2008. — P. 318–331. — DOI: 10.1016/j.parco.2007.12.001. — MathSciNet: MR2428880.
  33. J.R. Clausen, Jr. D.A. Reasor, C.K. Aidun. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture // Computer Physics Communications. — 2010.
  34. J.T.B. Crawley, S. Zanardelli, C.K.N.K. Chion, et al. The central role of thrombin in hemostasis // Journal of thrombosis and haemostasis. — 2007. — V. 5 (suppl. 1). — P. 95–101. — DOI: 10.1111/j.1538-7836.2007.02500.x.
  35. CUDA. — http://www.nvidia.com/object/cuda_home_new.html.
  36. X. Descovich, G. Pontrelli, S. Succi, et al. Modeling elastic walls in Lattice Boltzmann simulations of arterial blood flow // IFAC Proceedings Volumes. — 2012. — V. 45, no. 2. — P. 936–941. — DOI: 10.3182/20120215-3-AT-3016.00165.
  37. W. Dzwinel, K. Boryczko, D.A. Yuen. A discrete-particle model of blood dynamics in capillary vessels // Journal Of Colloid And Interface Science. — 2003. — V. 258, no. 1. — P. 163–173. — DOI: 10.1016/S0021-9797(02)00075-9. — ads: 2003JCIS..258..163D.
  38. W. Dzwinel, D.A. Yuen. A two-level, discrete particle approach for large-scale simulation of colloidal aggregates // International Journal of Modern Physics C. — 2000. — V. 11, no. 5. — P. 1037–1062. — DOI: 10.1142/S0129183100000882. — ads: 2000IJMPC..11.1037D.
  39. W. Dzwinel, D.A. Yuen. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model // Journal of Colloid and Interface Science. — 2002. — no. 225. — P. 179–190.
  40. W. Dzwinel, D.A. Yuen, K. Boryczko. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model // Journal of Molecular Modeling. — 2002. — no. 8. — P. 33–43.
  41. P. Espan˜ol. A fluid particle model // Physical Review. — 1998. — V. 57, no. 3. — P. 2930–2948.
  42. S.R. Fulton. Semi-implicit time differencing. — Potsdam, NY: Department of Mathematics and Computer Science Clarkson University, 2004. — Technical Report No. 2002-01. — Revised June 1.
  43. S.G. Gabbanelli, G. Drazer, J. Koplik. Lattice Boltzmann method for non-Newtonian fluid flows // Physical review E. — 2006. — V. 72. — 046312. — DOI: 10.1103/PhysRevE.72.046312. — ads: 2005PhRvE..72d6312G.
  44. J.G. Gay, B.J. Berne. Modification of the overlap potential to mimic a linear site–site potential // Journal of Chemical Physics. — 1981. — V. 74. — P. 3316–3319. — ads: 1981JChPh..74.3316G.
  45. L. Graf, D.A. Tsakiris. Anticoagulant treatment: the end of the old agents? // Swiss medical weekly. — 2012. — V. 142. — P. w13864.
  46. L. Greengard, V. Rokhlin. A fast algorithm for particle simulations // Journal of computational physics. — 1987. — V. 73. — P. 325–348. — DOI: 10.1016/0021-9991(87)90140-9. — MathSciNet: MR0918448. — ads: 1987JCoPh..73..325G.
  47. B.P. Helmke, S.N. Bremne, B.W. Zweifach, et al. Mechanisms for increased blood flow resistance due to leukocytes // American Journal of Physiology. — 1997. — V. 273. — P. H2884–H2890.
  48. J. Hoffman, J. Jansson, R. Vilela de Abreu. Unicorn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry // Computers & Fluids. — 2012.
  49. P.J. Hoogerbrugge, E.J.M.V.A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics // Europhysics Letters. — 1992. — V. 19, no. 3. — P. 155–160. — DOI: 10.1209/0295-5075/19/3/001. — ads: 1992EL.....19..155H.
  50. G. Karypis. Metis/Parmetis web page, University of Minnesota. — 2008. — http://glaros.dtc.umn.edu/gkhome/views/metis.
  51. M. Levi, E. Eerenberg, P.W. Kamphuisen. Bleeding risk and reversal strategies for old and new anticoagulants and antiplatelet agents // Journal of Thrombosis and Haemostasis. — 2011. — no. 9. — P. 1705–1712. — DOI: 10.1111/j.1538-7836.2011.04432.x.
  52. S.H. Kim, H. Pitsch, I.D. Boyd. Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers // Journal of computational physics. — 2008. — V. 227. — P. 8655–8671. — DOI: 10.1016/j.jcp.2008.06.012. — ads: 2008JCoPh.227.8655K.
  53. M. Martone, S. Filippone, S. Tucci, et al. Utilizing recursive storage in sparse matrix-vector multiplication preliminary considerations / CATA. — 2010.
  54. M.D. Mazzeo, P.V. Coveney. HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries // Computer physics communication. — 2008. — V. 178. — P. 894. — DOI: 10.1016/j.cpc.2008.02.013. — MathSciNet: MR2672075. — ads: 2008CoPhC.178..894M.
  55. G.M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing. — Ottawa, Canada: IBM Ltd, 1966. — Technical Report.
  56. B. Neu, S.O. Sowemimo-Coker, H.J. Meiselman. Cell-cell affinity of senescent human erythrocytes // Biophysical journal. — 2003. — V. 85. — P. 75–84. — DOI: 10.1016/S0006-3495(03)74456-7. — ads: 2003BpJ....85...75N.
  57. R. Ouared, B. Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes // Journal of Statistical Physics. — 2005. — V. 121, no. 1/2. — P. 209–221. — DOI: 10.1007/s10955-005-8415-x. — MathSciNet: MR2185466. — ads: 2005JSP...121..209O.
  58. S.J. Owen, J.F. Shepherd. Cubit project web page. — 2008. — http://cubit.sandia.gov/.
  59. G. Peano. Sur une courbe, qui remplit toute une aire plane // Mathematische Annalen. — 1890. — V. 36, no. 1. — P. 157–160. — DOI: 10.1007/BF01199438. — MathSciNet: MR1510617.
  60. A. Peters, S. Melchionna, E. Kaxiras. Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: full heart-circulation system at near red-blood cell resolution / SC10. — November 2010, New Orleans, Louisiana, USA.
  61. I. Pivkin, G.E. Karniadakis. Accurate coarse-grained modeling of red blood cells // Physical review letters. — 2008. — V. 101. — 118105. — DOI: 10.1103/PhysRevLett.101.118105. — ads: 2008PhRvL.101k8105P.
  62. V. Pivkin, P.D. Richardson, G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2006. — V. 103, no. 46. — P. 17164–17169. — DOI: 10.1073/pnas.0608546103. — ads: 2006PNAS..10317164P.
  63. P. Prandoni, A.W. Lensing, A. Piccoli, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis // Blood. — 2002. — V. 100. — P. 3484–3488. — DOI: 10.1182/blood-2002-01-0108.
  64. Y.H. Qian, D. d’Humieres, P. Lallemand. Lattice BGK models for Navier-Stokes equations // Europhysics Letters. — 1992. — V. 17, no. 6. — P. 479–483. — DOI: 10.1209/0295-5075/17/6/001. — ads: 1992EL.....17..479Q.
  65. A. Rahimian, I. Lashuk, S.K. Veerapaneni, et al. Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures / Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. — 2010. — P. 1–11.
  66. Repast. Repast organization for architecture and design, "Repast". — 2008. — http://repast.sourceforge.net/.
  67. A.S. Sangani, G. Mo. Inclusion of lubrication forces in dynamic simulations // Physics of fluids. — 1994. — V. 6, no. 5. — P. 1653. — DOI: 10.1063/1.868228. — ads: 1994PhFl....6.1653S.
  68. S. Succi. The Lattice Boltzmann equation for fluid dynamics and beyond. — USA: Oxford University Press, 2001. — MathSciNet: MR1857912.
  69. C.H. Sun, L.L. Munn. Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis // Biophysical Journal. — 2005. — V. 88, no. 3. — P. 1635–1645. — DOI: 10.1529/biophysj.104.051151. — ads: 2005BpJ....88.1635S.
  70. L.M. Surhone, M.T. Tennoe, S.F. Henssonow. Fast multipole method. — Betascript Publishing, 2011. — 128 p.
  71. T.E. Tezduyar, A. Sameh. Parallel finite element computations in fluid mechanics // Computer Methods In Applied Mechanics And Engineering. — 2006. — V. 195, no. 13–16. — P. 1872–1884. — DOI: 10.1016/j.cma.2005.05.038. — MathSciNet: MR2203996. — ads: 2006CMAME.195.1872T.
  72. A. Tokarev, G. Panasenko, F. Ataullakhanov. Segregation of flowing blood: mathematical description // Math. Model. Nat. Phenom. — 2011. — V. 6, no. 5. — P. 281–319. — DOI: 10.1051/mmnp/20116511. — MathSciNet: MR2825230.
  73. Top 500 list, june 2011. — http://www.top500.org/list/2011/06.
  74. Top 500 list, november 2011. — http://www.top500.org/list/2011/11.
  75. S.K. Veerapaneni, A. Rahimian, G. Biros, D. Zorin. A fast algorithm for simulating vesicle flows in three dimensions // Journal of Computational Physics. — 2011. — V. 230, no. 14. — P. 5610–5634. — DOI: 10.1016/j.jcp.2011.03.045. — MathSciNet: MR2799527. — ads: 2011JCoPh.230.5610V.
  76. N. Wiener, A. Rosenblueth. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle // Arch. Inst. Cardiol. Mexico. — 1946. — V. 205, no. 16. — MathSciNet: MR0025140.
  77. Wiener process. — http://en.wikipedia.org/wiki/Wiener_process.
  78. U. Wilensky. NetLogo. — http://ccl.northwestern.edu/netlogo/.
  79. Center for connected learning and computer-based modeling. — Evanston, IL: Northwestern University, 1999.
  80. L. Ying, G. Biros, D. Zorin, H. Langston. A new parallel kernel-independent fast multiple algorithm / Proceedings of SC03, The SCxy Conference series. — Phoenix, Arizona: ACM/IEEE, 2003.
  81. H. Zhao, A.H.G. Isfahani, L.N. Olson. A spectral boundary integral method for flowing blood cells // Journal of Computational Physics. — 2010. — V. 229. — P. 3726–3744. — MathSciNet: MR2609750. — ads: 2010JCoPh.229.3726Z.
  82. A.Z. Zinchenko, R.H. Davis. Large-scale simulations of concentrated emulsion flows // Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences. — 2003. — V. 361. — P. 813–845. — DOI: 10.1098/rsta.2003.1178. — ads: 2003RSPTA.361..813Z.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.