Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

[ Switch to English ]

Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах

 pdf (467K)

В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.

В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.

Ключевые слова: квантизация, поиск архитектуры нейронной сети, дистилляция знаний, обрезка, обучение с подкреплением, сжатие модели
Цитата: Кхан С.А., Шулепина С., Шулепин Д., Лукманов Р.А. Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах // Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619
Citation in English: Khan S.A., Shulepina S., Shulepin D., Lukmanov R.A. Review of algorithmic solutions for deployment of neural networks on lite devices // Computer Research and Modeling, 2024, vol. 16, no. 7, pp. 1601-1619
DOI: 10.20537/2076-7633-2024-16-7-1601-1619
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.