
COMPUTER RESEARCH AND MODELING
2024 VOL. 16 NO. 7 P. 1601–1619
DOI: 10.20537/2076-7633-2024-16-7-1601-1619

SPECIAL ISSUE

UDC: 004.8

Review of algorithmic solutions for deployment
of neural networks on lite devices

S.A. Khana, S. Shulepinab, D. Shulepinc, R.A. Lukmanovd

Innopolis University,
1 Universitetskaya st., Innopolis, 420500, Russia

E-mail: a sameedkhandurrani@gmail.com, b sofi1221@mail.ru, c dshulepin2013@gmail.com,
d r.lukmanov@innopolis.ru

Received 27.10.2024, after completion — 16.11.2024
Accepted for publication 25.11.2024

In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and
microcontrollers (MCUs) are becoming increasingly common. These devices are more energy-
efficient and affordable, often with reduced features compared to the standard versions such as
very limited memory and processing power for typical machine learning models. However, modern
machine learning models can have millions of parameters, resulting in a large memory footprint.
This complexity not only makes it difficult to deploy these large models on resource constrained
devices but also increases the risk of latency and inefficiency in processing, which is crucial in some
cases where real-time responses are required such as autonomous driving and medical diagnostics. In
recent years, neural networks have seen significant advancements in model optimization techniques
that help deployment and inference on these small devices. This narrative review offers a thorough
examination of the progression and latest developments in neural network optimization, focusing on
key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It
examines how these algorithmic solutions have progressed and how new approaches have improved
upon the existing techniques making neural networks more efficient. This review is designed for
machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods
but wish to explore the available techniques. It highlights ongoing research in optimizing networks
for achieving better performance, lowering energy consumption, and enabling faster training times,
all of which play an important role in the continued scalability of neural networks. Additionally, it
identifies gaps in current research and provides a foundation for future studies, aiming to enhance the
applicability and effectiveness of existing optimization strategies.

Keywords: quantization, neural architecture search, knowledge distillation, pruning, reinforcement
learning, model compression

Citation: Computer Research and Modeling, 2024, vol. 16, no. 7, pp. 1601–1619.

© 2024 Sameed A. Khan, Sofi Shulepina, Danila Shulepin, Rustam A. Lukmanov
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ
И МОДЕЛИРОВАНИЕ 2024 Т. 16 № 7 С. 1601–1619
DOI: 10.20537/2076-7633-2024-16-7-1601-1619

СПЕЦИАЛЬНЫЙ ВЫПУСК

УДК: 004.8

Обзор алгоритмических решений для развертывания
нейронных сетей на легких устройствах

С.А. Кханa, С. Шулепинаb, Д. Шулепинc, Р. А. Лукмановd

Университет Иннополис,
Россия, 420500, г. Иннополис, ул. Университетская, д. 1

E-mail: a sameedkhandurrani@gmail.com, b sofi1221@mail.ru, c dshulepin2013@gmail.com,
d r.lukmanov@innopolis.ru

Получено 27.10.2024, после доработки — 16.11.2024
Принято к публикации 25.11.2024

В современном мире, ориентированном на технологии, легкие устройства, такие как
устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распро-
страненными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают
урезанными возможностями, по сравнению со стандартными версиями, такими как ограничен-
ная память и вычислительная мощность. Современные модели машинного обучения могут со-
держать миллионы параметров, что приводит к значительному росту требований по объему
памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах
с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обра-
ботке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как
автономное вождение или медицинская диагностика.

В последние годы нейронные сети достигли значительного прогресса в методах оптимиза-
ции моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Дан-
ный обзор представляет собой подробное исследование прогресса и последних достижений в оп-
тимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация,
прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает,
как эти алгоритмические решения развивались и как новые подходы улучшили существующие
методы, делая нейронные сети более эффективными. Статья предназначена для исследовате-
лей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы
с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие
исследования в области оптимизации нейронных сетей для достижения лучшей производитель-
ности, снижения потребления энергии и ускорения времени обучения, что играет важную роль
в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы
в текущих исследованиях и закладывается основа для будущих исследований, направленных на
повышение применимости и эффективности существующих стратегий оптимизации.

Ключевые слова: квантизация, поиск архитектуры нейронной сети, дистилляция знаний,
обрезка, обучение с подкреплением, сжатие модели

© 2024 Самеед Ахмед Кхан, Софья Шулепина, Данила Шулепин, Рустам A. Лукманов
Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Чтобы получить текст лицензии, посетите веб-сайт http://creativecommons.org/licenses/by-nd/3.0/
или отправьте письмо в Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Review of algorithmic solutions for deployment . . . 1603

Introduction

Today complex machine learning models are running directly or indirectly behind many tasks
that have become a part of our daily lives. Most of these models are running on various lite devices such
as mobile phones, microcontrollers, and Internet of Things (IoT) devices and can be found in various
industries from healthcare and autonomous systems to finance and telecommunications. Usually these
devices are limited in terms of memory and processing capabilities. Modern day machine learning
models require a lot of energy consumption. For example, a study suggests that GPT-3 needs to “drink”
around a 500 ml bottle of water for 10–50 responses [Li et al., 2023]. Such limitations make it difficult
to deploy advanced AI algorithms on them and expensive to use them.

Deep learning models are designed to help devices make decisions or predictions by analyzing
data. These models can be very large and require enormous computational resources to operate
effectively. For instance, a model that can recognize objects in images might need extensive memory
and processing power, which are often unavailable in small devices. This mismatch between the needs
of complex models and the capabilities of tiny devices poses a significant challenge.

To address these issues, researchers have developed such techniques as quantization [Jacob et
al., 2017], pruning [Han et al., 2015], knowledge distillation [Hinton, Vinyals, Dean, 2015], and neural
architecture search [Elsken, Metzen, Hutter, 2019] to adapt deep learning models for use on small
devices. Quantization slightly reduces the precision of model computation, thus saving memory and
computational power. Pruning involves removing insignificant parts of the model, making it sparse and
less complex. Neural Architecture Search optimizes the design of the model to improve its efficiency.
Knowledge Distillation uses a more complex model (teacher model) to train a simpler model (student
model) by simulating its behavior [Lin et al., 2023]. These algorithmic solutions help to make complex
models more feasible for deployment on resource-constrained devices. We can find these solutions
being utilized in machine learning models powering self-driving cars, wearable health devices, and
various mobile applications.

This narrative review explores these techniques and how they have evolved. It provides an
overview of the current methods used to adapt neural networks for small devices and discusses
their development. The review is intended for machine learning engineers and enthusiasts who are
curious about the latest solutions for running AI on limited-resource devices. Understanding these
advancements might help readers get an insight into the progress being made in this field and identify
areas for improvement.

Literature review

In recent years, the development of energy-efficient and highly-integrated platforms has
paved the way for next-generation industrial artificial intelligence (AI) applications. These
applications incorporate various sensors, processors, and functional modules, necessitating the adaptive
transformation of diverse data representation formats. To achieve this, model compression and
optimization techniques play a crucial role. This review examine multiple different approaches in
the context of industrial IoT applications.

Quantization

The main idea of quantization is to reduce the model weights, which are usually stored as
32-bit floating-point numbers. According to Mark Horowitz [Horowitz, 2014] a significant drop in
energy consumption during multiplication or addition operations occurs by reducing the number of
bits. Thus, 32-bit floating-point addition is 30 times more costly than 8-bit integer addition and 32-bit
floating-point multiplication is around 18 times more costly than 8-bit integer multiplication. Figure 1
represents the comparison of addition and multiplication operations cost on a 45 nm technology node of

2024, Т. 16, № 7, С. 1601–1619

1604 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

Figure 1. Comparison of rough energy cost for addition and multiplication operations

semiconductor manufacturing process, where the energy consumption for these operations is measured
at an operating voltage typically around 0.9 V.

K-means based quantization
Han et al. introduced the k-means quantization technique [Han, Mao, Dally, 2016]. An original

weight matrix of M 32-bit float values is clustered using a matrix of N-bit indexes of codebook, and
a codebook containing cluster centroids. Each cluster index value is an index of codebook where the
cluster centroid of that particular weight is stored. The weights may be reconstructed by replacing the
centroid value in each cell of the matrix.

For example, the matrix of 16 32-bit float values may be represented as 16 2-bit integer indexes
for codebook of 4 32-bit float centroids (Fig. 2). The size of the initial matrix is reduced by 3.2 times.

Figure 2. K-means weight quantization

However, the reconstruction error can still be minimized by grouping the gradients of each
cluster, summing them and subtracting from the centroids. Those fine-tuned centroids result in more
accurate weight matrix, as shown in Fig. 3.

Linear quantization
Jacob et al. provides a quantization scheme that was adopted in TensorFlow Lite, a version of

TensorFlow for small and mobile devices [Jacob et al., 2017]. This schema use an affine mapping of
integers to real numbers:

r = S (q − Z), (1)

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1605

Figure 3. Fine-tuning quantized weights

where r is floating point weights, S is scale, floating point quantization parameter, q is quantized
weights of signed integer values, Z is the zero-point, quantized integer representing r = 0.

Figure 4 shows a mapping from real values to quantized values.

Figure 4. Linear quantization representation

The maximum and minimum values in these ranges help define how the real number scale
is compressed into the integer scale. Since the maximum and minimum values on real scale and
quantization scale are known before performing quantization, the quantization parameter and zero
point can be obtained from the following equations:

S =
rmax − rmin

qmax − qmin

. (2)

The zero-point Z is found by calculating where the real number 0 fits on the integer scale:

Z = round
(
qmin −

rmin

S

)
. (3)

Per channel quantization
Krishnamoorthi suggests using per-channel quantization technique in which the absolute

maximum from each channel is stored and then used for quantization in each channel [Krishnamoorthi,
2018]:

qx = round
(r
S

)
+ Z. (4)

Each channel has a scale and zero-point based on the minimum and maximum values within that
channel. It means the same floating-point value might be represented differently in different channels,
depending on the specific quantization parameters for each channel. The overhead in this method arises
when there is a need to store a lot of scales, which often utilize 32 bits, for every channel. Thus, the

2024, Т. 16, № 7, С. 1601–1619

1606 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

method requires a significant amount of storage when dealing with a large number of channels, like
in large-language models where thousands of channels are present. While per-channel quantization of
weights is becoming more widely adopted, not all commercial hardware is capable of supporting it.

Per tensor quantization
Another similar approach is per-tensor [Nagel et al., 2019] quantization, in which a single scale

is used for the entire tensor. This method is easy to implement and less computational and memory
intensive as compared to per-channel quantization since it does not require scale and offset values for
each channel but it can decrease the accuracy of the models, especially when output channels have
different ranges.

Per vector quantization
VS-Quant [Dai et al., 2021] is a more granular per-vector scaled quantization technique. The

channel is divided into vectors and a scaling factor is determined for each vector. This method is more
suitable for models with high variability within channels. The effective bit width in VS-quant is slightly
higher due to more vector scales, and can be calculated by:

Effective bit width = Bits per element +
Bits for scale

Number of elements in vector
. (5)

Block data representation with shared microexponents (BDR-MX)
Microsoft introduced the Block Data Representations (BDR) framework which outlines methods

for quantizing and scaling tensor values together. Further, a new numerical approach to quantization
formats based on the MX datatype was introduced [Rouhani et al., 2023]. Among MX datatypes,
MX4, MX6 and MX9 are the optimal choices because they effectively balance the trade-offs between
precision, efficiency, hardware implementation complexity and application suitability. MX uses shared
microexponents for scaling, a single bit for an exponent is shared between two elements, allowing
these elements to use the same scaling factor which is applied at the hardware level. The MX datatype
is being used in various applications including large language models (LLMs).

Dynamic range clipping for quantization
Capturing the range of neural network activations is necessary in maintaining higher accuracy

of the model.
One of the approach is to track minimum and maximum values of activation during training, and

then use Exponential Moving Averages (EMA) [Jacob et al., 2017] to smoothen any fluctuations in the
values.

Running calibration batches of sample data is a widely used method [Verma et al., 2021] where
sample data are run on the trained FP32 model and then statistical methods are applied to get an estimate
of the range. For data with known distributions like Gaussian or Laplacian, we can do analytical
clipping [Banner et al., 2018], otherwise, Kullback – Leibler Divergence can be considered to find
values with minimal information loss.

OCTAV algorithm was also introduced [Sakr et al., 2022] to find the optimal limit for the
quantized values. It uses an optimization approach, based on the Newton –Raphson method, to
iteratively determine the optimal clipping scalar by reducing the MSE between the original values
and quantized values.

Quantization-aware training
Quantization-Aware training (QAT) is a method in which model is trained initially on full-

precision weights. Then the quantization is simulated on the high-precision weights and the network
performs forward pass using the quantized weights. During the backward pass, gradients are calculated
and used to update the original high-precision weights, not the quantized ones. This process is repeated

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1607

several times and the model eventually learns to make accurate predictions even when the weights are
quantized. Normally for the backward pass, the gradients are calculated as

∂L
∂W
=
∂L
∂Q(W)

· ∂Q(W)
∂W

,

where L is the loss function, W are the weights, and Q(W) are the quantized weights.
But since quantization is discrete, the derivative of quantized weights over original weights

would be
∂Q(W)
∂W

= 0.

To cater this, QAT uses Straight-Through Estimator (STE) [Bengio, Léonard, Courville, 2013] which
approximates that the quantization didn’t happen and passes gradients through as if the weights were
not quantized.

With STE, ∂Q(W)
∂W is approximated as the identity function I(·) and the equation becomes

∂L
∂W
=
∂L
∂Q(W)

.

This allows the gradients to flow through quantized weights during training process, ensuring that
weights are updated the model learns and improves its performance.

Memory-driven mixed low precision quantization
A memory aware quantization approach was introduced by Rusci et al. [Rusci, Capotondi,

Benini, 2019]. It works by first analyzing the available memory which include the Read-Only memory
(RO) and Write-Only memory (RW) of the machine and establishing the allowable maximum Read-
Only memory (MRO) and maximum Write-Only memory (MRW) that can be used during inference.
Based on the model, it initially set the bit precision to 8-bit and then it decides on possible bit-width
for each layer from 2-bit, 4-bit and 8-bit precision. It iteratively performs forward pass, calculates the
memory for input and output tensors, and if memory exceeds the MRO, it reduces the bit precision
of the output tensor of the current layer and the input tensor of the next layer. Similarly, it performs
backward pass and if memory exceeds the MRO, it reduces the bit precision of the input tensor of
current layer and the output tensor of the previous layer. After making sure that total memory used for
activate tensors and parameters, the quantized model is converted to integer only model by inserting
Integer Channel-Normalization (ICN) layers. This is done to ensure that model runs effectively by
performing integer arithmetic which is preferable for microcontrollers.

Table 1 shows the comparison between different quantization approaches including the memory
driven mixed low precision technique on Integer-Only MobilenetV1 224 1.0. In comparison table, PL
Quantization stands for per-layer quantization, PC Quantization stands for per-channel quantization,
FB stands for folding of batch-norm parameters into weights and ICN stands for Integer Channel-
Normalization.

Table 1. Memory-driven Quantization on Integer-Only MobilenetV1 224 1.0

Quantization method Top1 accuracy Weight memory footprint
Full-precision 70.90 % 16.27 MB
PL quantization + FB INT8 70.10 % 4.06 MB
PL quantization + ICN INT4 61.75 % 2.10 MB
PC quantization + ICN INT4 66.41 % 2.12 MB

While targeting specific hardware like ARM based microcontrollers, CMix-NN can be
utilised [Capotondi et al., 2020]. CMix-NN is specialised for Cortex-M architectures, exploiting

2024, Т. 16, № 7, С. 1601–1619

1608 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

the specific features of ARM’s instruction set, such as vector arithmetic extensions to maximize
computational efficiency while ensuring low memory usage.

Outlier free quantization for transformers
Transformers are specific kinds of attention models and have an attention head that requires

quantization as well when quantizing a transformer model [Vaswani, 2017]. Sometimes quantization
of transformers leads to outlier values in certain parts of the model causing accuracy loss. The outliers
mainly appear in softmax function of self attention layer when the model tries not to update certain
parts of the data by making attention update as close to zero as possible. To achieve this, the input
to softmax is pushed to extremely high or extremely low, getting very small numbers as a result from
softmax. The problem occurs when these extreme values become outliers during quantization as these
extreme values cannot be represented well in low-bit formats like INT8, causing accuracy problems. To
overcome this problem, two solutions were suggested [Bondarenko, Nagel, Blankevoort, 2023] namely
clipped softmax and gated attention. Clipped softmax introduces a stretch factor ζ and a shift factor γ
and using following equation it adjusts the values so that they remain within a range of 0 and 1, without
the outliers:

Clipped Softmax(x; ζ, γ) = clip((ζ − γ) · softmax(x) + γ, 0, 1). (6)

In gated attention mechanism, a gating function is added to the standard attention. This gating
function G(X) is a lightweight neural network that is trained jointly with the model. The standard
attention function is replaced with updated gated attention function in each layer of the transformer:

Gated Attention(x) = sigmoid(G(x)) � softmax(Attention scores). (7)

These solutions helps avoid the outliers and provides quantization of transformers with improved
accuracy.

Pruning

In 2005, Drachman [Drachman, 2005] performed Stereologic studies which shows that an adult
human brain has average 7000 synaptic connections on average and undergoes structural brain changes.
According to the study, losses in less critical synaptic connections may not significantly affect overall
brain function.

A similar study was done by Peter Huttenlocher who did a groundbreaking research on synaptic
development [Walsh, 2013]. Peter demonstrated that billions of synapses in the human cerebral cortex
are formed in infancy, which are then pruned during early childhood as shown in Fig. 5 [Huttenlocher,
1990].

Figure 5. Average synapses per neuron

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1609

Pruning in neural networks is a similar approach which was first introduced by LeCun et al.
in 1989 under Optimal Brain Damage [LeCun, Denker, Solla, 1989]. In Optimal Brain Damage,
unimportant weights are removed and neural network speed is significantly improved while the
accuracy is also slightly improved. This confirms the usefulness of the pruning methods in a real-
world application and their prevalence in nature. Interestingly, pruning is a must in biological brains.

Magnitude based pruning
A three-step method was developed [Han et al., 2015] to prune redundant connections. The steps

include network training in which the connection importance is learnt, then comes the pruning step
where the weights below a certain threshold are removed, and lastly retraining the network to find out
the weights for remaining connections of sparse neural network as illustrated in Fig. 6. The retraining
of the network allows to remove the neurons without any input or output connections as shown in
Fig. 7. This approach eventually reduces the parameters of AlexNet by 9x and VGG-16 by 13x without
loss of accuracy.

Cyclical pruning
One of the drawbacks of magnitude based pruning is that the removed weights cannot be

recovered. In some cases, it is important to recover weights for example when important weights
are removed mistakenly during pruning and when some specific weight configurations result in better
accuracy. Cyclic pruning follows a periodic schedule. If weights are pruned in a cycle, they can
be potentially recovered in a next cycle. The possibility to recover weights helps recover important
weights and make neural networks more efficient. The Table 2 shows accuracy of various models on
CIFAR-10 dataset [Krizhevsky, Hinton, 2009] with 90 % pruning ratio. The magnitude based pruning
was run for 100 epochs, and cyclical pruning was run for 5 cycles of 20 epochs each. Similarly, Table 3
shows accuracy of various models on Imagenet dataset [Deng et al., 2009] with 70 % pruning ratio. The
magnitude based pruning was run for 60 epochs, and cyclical pruning was run for 3 cycles of 20 epochs
each [Srinivas et al., 2022].

Table 2. Accuracy on CIFAR10 dataset — magnitude based pruning and cyclical pruning

Model Magnitude based pruning Cyclic pruning
ResNet56 92.35 % ± 0.1 92.41 % ± 0.1
Mobilenet 84.99 % ± 0.3 86.99 % ± 0.3

Table 3. Accuracy on Imagenet dataset — magnitude based pruning and cyclical pruning

Model Magnitude based pruning Cyclic pruning
ResNet18 69.2 % 69.4 %
ResNet50 75.9 % 75.7 %
EfficientNet 68 % 69.9 %
MobilenetV2 61.3 % 64.4 %

Scaling based pruning
Liu et al. introduced scaling based pruning [Liu et al., 2017]. A scaling factor is associated

with each filter in convolutional layers. The scaling factor refers to a parameter that determines how
aggressively or conservatively weights are pruned. If the scaling factor is quite small for a channel, the
channel is then pruned to reduce the size of the model.

Structured pruning

To further improve the deployment of neural networks on resource constrained devices Wen et
al. proposed a technique called Structured Sparsity Learning (SSL) [Wen et al., 2016]. The technique

2024, Т. 16, № 7, С. 1601–1619

1610 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

Figure 6. Steps involved in pruning method by Han S. et al.

Figure 7. DNN before and after pruning

aims at regularizing the structures of deep neural networks by removing entire rows or columns in the
weight matrices. As compared to three-step pruning approach by Han et al. which gives 42.80 % top-1
error rate on AlexNet on ILSVRC 2012, SSL provides a slightly better accuracy with 42.53 % top-1
error rate. However, the major improvement is in performance. On three-step pruning the speedup on
CPUs ranges from 1.27× to 1.68× and on GPUs from 1.25× to 1.72×, while SSL consistently achieves
better speedups, averaging around 5.1× on CPUs and 3.1× on GPUs.

Mao et al. thoroughly explored the effects of different sparsity techniques on neural
networks [Mao et al., 2017]. The sparsity techniques were divided into four major categories based
on their dimensions. Fine-grained Sparsity with 0 dimension, Vector-level Sparsity with 1 dimension,
Kernel-level Sparsity with 2 dimensions and Filter-level Sparsity with 3 dimensions as shown in Fig. 8.
It was found that neural networks with structured pruning are easy to accelerate as compared to those
with unstructured pruning. The main reason behind that is structured pruning removes the extra columns
of the matrix making the multiplication process faster. However, the fine-grained sparsity gives the
highest accuracy on multiple models with same density. The comparison is represented in Table 4.

Table 4. Top-5 accuracies on various granularity levels

Model Density Kernel level Acc Vector level Acc Fine-grained Acc
AlexNet 24.80 % 79.20 % 79.94 % 80.41 %
VGG-16 23.50 % 89.70 % 90.48 % 90.56 %
GoogLeNet 38.40 % 88.83 % 89.11 % 89.40 %
ResNet-50 40 % 92.07 % 92.26 % 92.34 %

DenseNet-121 30.10 % 91.56 % 91.89 % 92.21 %

NVIDIA came up with a compression technique in 2021 for structured pruning which allows one
to keep 2-bits Indices as well. It is supported by NVIDIA’s Ampere GPU architecture, which delivers
up to 2x acceleration.

Average percentage of zero based pruning
Hu et al. introduced another approach for pruning which is based on mainly two steps [Hu et

al., 2016]. The first one is to apply ReLU to generate zeros in the output activation and second one is

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1611

Figure 8. Different structure of sparsity in a 4-dimensional weight tensor

calculating Average Percentage of Zero activations (APoZ) to measure how important each neuron is.
After these steps, the channel with highest APoZ can be pruned. The approach suggested by Han et
al. [Han et al., 2015] prunes neurons by removing all their connections. This is ineffective espacially
when there are many connections. APoZ based pruning uses APoZ metric to identify neurons that do
not contribute much and directly prunes them.

Regression based pruning
He et al. proposed a technique by combining regression based channel selection and least square

reconstruction [He, Zhang, Sun, 2017]. It largely minimizes the reconstruction error of corresponding
layer’s outputs. One drawback of this technique is that it works with each individual layer, and does
not provide full picture of complete neural network.

NetAdapt
NetAdapt is an iterative method to finetune the model [Yang et al., 2018]. In each iteration, the

latency is reduced by a certain amount which is manually defined. For each layer of neural network, the
layer is pruned such that the latency reduction meets the defined criteria and after short term finetuning
the model, the accuracy is measured. Finally, the layer with highest accuracy is pruned. This process
is repeated until total latency reduction satisfies the constraint. When NetAdapt was applied on 75 %
MobileNetV1 [Howard et al., 2017] with 224 input size of network it, it outperforms Automated
Deep Compression and Acceleration with Reinforcement Learning (ADC) approach [He, Han, 2018]
with 19.9 million lesser MACs (Multiply Accumulate operations) and 4.3 ms lower latency on Google
Pixel 1, Mobile CPU for the same accuracy of 69.1 % [Yang et al., 2018].

Automated pruning using reinforcement learning
He et al. came up with Automated Deep Compression (ADC) that aimed to achieve pruning and

quantization using reinforcement learning, automating the compression process [He, Han, 2018]. This
approach with later revised with AutoML for Model Compression (AMC) focusing only on pruning
using reinforcement learning instead of relying on manually handcrafting rule-based approach for
pruning. This approach reduces the overhead and effort involved in manually redesigning the network.
A MobileNetV1 model pruned using AMC with an accuracy of 70.2 % takes 63 ms inference time as
compared to a MobileNetV1 model pruned using NetAdapt with similar accuracy which takes around
80.35 ms inference time.

The comparison of ADC with NetAdapt and AMC with NetAdapt is shown in Fig. 9.

Hardware support for pruning
As the sparsity becomes crucial for parameters reduction and accelerated execution, NVIDIA

Ampere GPU architectures stepped in to make sparsity adoption practical [Mishra et al., 2021].
NVIDIA introduced sparsity support in its matrix-math units, Tensor Cores. Tensor Cores are

2024, Т. 16, № 7, С. 1601–1619

1612 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

Figure 9. Comparison of pruning using ADC with NetAdapt and AMC with NetAdapt

specialized processing units within NVIDIA’s GPUs, designed to accelerate the operations of deep
learning models, especially matrix-multiplications. With the concept of M : N sparsity, all the nonzero
elements of matrix (M) out of total number of elements (N) are pushed to the left saving storage and
computation and only the nonzero elements are used for matrix multiplication.

Qualcomm AI Research team compared Quantization with Pruning [Kuzmin et al., 2024] under
some conditions. For pruning, magnitude pruning with fine-tuning was taken into consideration and for
quantization, symmetric uniform quantization was considered. The results suggested that quantization
outperformed the pruning technique in most cases.

Neural architecture search

A neural network can be designed in a certain way to achieve a particular objective. A very
simple example can be a smaller size of model to be deployed on a lite device. But designing neural
networks might require excessive involvement of human expertise. To counter this, Neural Architecture
Search (NAS) comes to help. It is a way to design an architecture using AI approaches.

In 2019, Elsken et al. presented an overview of work done regarding the automated neural
architecture search [Elsken, Metzen, Hutter, 2019]. They divided the methods NAS according to three
dimensions: search space, search strategy and performance estimation strategy. From a search space an
architecture is selected through a particular search strategy and then passed to performance estimation
strategy. The performance estimate of that architecture is returned to search strategy and the process
keeps repeating until an architecture is finalized.

Tiny NAS

Lin et al. proposed a two stage neural architecture search method named TinyNAS for better
implementation of NAS on tiny devices [Lin et al., 2020]. It works by first optimizing the search
space to cater the resource constraints and then with in that optimized search space, it performs neural
architecture search. Using a simple heuristic that if a model has large number of FLOPs, it is more
likely to have a higher accuracy and the models with higher FLOPs that can fit into the memory are
better suited for the optimized search space.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1613

Reinforcement learning based NAS
Zoph and Le used a Recurrent Network controller to generate a description of an architecture,

and then a network with this architecture is trained [Zoph, Le, 2016]. The accuracy of the network is
then used to update and improve the RNN controller using reinforcement learning.

Chen et al. developed two methods, namely, Net2WiderNet and Net2DeeperNet, in which
a neural network learns from previous version of trained neural network with the help of knowledge
transfer without the need of retraining the model again from scratch [Chen, Goodfellow, Shlens, 2016].
It also allows moving to a larger neural network and makes the NAS process easier and smoother.

Gradients based NAS
DARTS [Liu et al., 2018] is another technique for finding efficient architectures. It is based

on a gradient-based method and treats the architecture search as a continuous problem, which also
implies that the search space is considered a continuous range. In the search space, the architecture is
represented as a directed acyclic graph and each node represents a feature while each edge represents
an operation like Pooling, Convolution etc. Instead of using specific operation for an edge, DART uses
combination of all operations and assigns weight to certain parameters. The key point about DARTS is
that it handles both the convolutional as well as RNN architectures.

HyperNet based NAS
The SMASH technique [Brock et al., 2017] uses an assistant model — HyperNet, to generate

weights for the neural network based on the design. Although the generated weights are not as good as
the original weights of the neural networks, they help rank the architecture saving the training time of
the neural network.

Zero-shot NAS
Measures like Gaussian complexity (Φ-scores) helps determine the expressitivity of a network

i. e. how well a network can learn and represent different patterns and features. If networks are too
deep and lack proper batch normalization layers, there are issues like numerical overflow. To address
such challenges another measure called Zen-score was introduced, based on which a zero-shot method
based on Zen-scores, known as Zen-NAS [Lin et al., 2021], was developed. It uses evolutionary search
to generate neural architectures which only requires a few forward inferences, and does not require
training of networks to find best architectures. This approach achieves top-1 accuracy on ImageNet-1k
within half a GPU day outperforming approaches like DARTS, ProxylessNAS and NASNet-A which
require around 4, 8.3 and 1800 GPU days respectively [Lin et al., 2021].

Hardware-aware NAS
While working with transformers it was observed that efficiency measurements based on FLOPs

do not always reflect actual performance. The requirements for a transformer design change based
on which hardware is being used. Using Hardware-Aware Transformers (HAT) [Wang et al., 2020],
a SuperTransformer is trained that has multiple subnetworks and allows a search from different latencies
to find best suited architecture for a hardware.

Since measuring inference latency on multiple devices is slow and expensive, an approach to
predict the latency was introduced in ProxylessNAS [Cai, Zhu, Han, 2018]. A predictive model is
trained to estimate the inference latency on various models, and after choosing the best model, the
latency was measured to confirm the results. ProxylessNAS has around 200 GPU hours search cost on
ImageNet with around 80 ms mobile latency while NASNet-A has around 48 000 GPU hours search
cost with a latency of 183 ms and MobileNetV1 which is manually designed network has a latency
of 113 ms [Cai, Zhu, Han, 2018].

In 2021, Neural Accelerator Architecture Search (NAAS) [Lin, Yang, Han, 2021] technique was
proposed. This search technique iteratively searches and optimizes neural network structure and the
hardware accelerator design it runs on. Along with that, it also searches for a compiler mapping that

2024, Т. 16, № 7, С. 1601–1619

1614 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

maps the neural network architecture on a particular hardware accelerator. The hardware accelerator
design mainly includes parameters like the size of the compute array, buffer sizes (for inputs, weights,
and outputs), and the interconnections between processing elements.

Knowledge distillation

Knowledge distillation is a technique used in machine learning to transfer knowledge from
a larger, more complex model (the “teacher”) to a smaller, more efficient model (the “student”).
Training through a teacher model in knowledge distillation helps the student model learn from the
teacher’s complex patterns and soft targets (probability distributions over classes predicted by teacher
network) instead of hard targets (definitive class labels), improving its performance and efficiency.

Standard distillation

Hinton et al. uses an interesting analogy of larvae and adult periods of insect to explain that each
period of lifecycle is designed to match certain needs [Hinton, Vinyals, Dean, 2015]. Similarly, we can
divide machine learning tasks mainly into training and inference periods where training requires more
focus on learning from the patterns and computational efficiency is usually not a concern, while for
inference efficiency is crucial. It also introduces the concept of distillation where a big model is trained
which is good at learning the patterns but the training and inference process is slow. When the soft
labels from this big network are used to train a smaller network, the smaller network is observed to
train faster and better, and it is also capable of performing inference faster because of less computations
required.

Figure 10. An illustration of Knowledge Distillation where small network learns from big network

Advanced knowledge distillation

FitNets [Romero et al., 2015] are a method to train smaller student networks using the
intermediate weights of teacher network. Usually, the teacher network is wider, so a fully connected

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1615

layer or 1-by-1 convolutional layer by a linear transformation makes it possible for both networks to
be compared.

Neurons in a network responds to certain patterns in the data. And if the neurons are activated by
certain patterns, those patterns are important for the task. Neuron Selectivity Transfer (NST) [Huang,
Wang, 2017] uses a method Maximum Mean Discrepancy to measure and minimize the difference
between the activation patterns or feature maps of student and teacher networks.

While Neuron Selectivity Transfer focuses on neuron response patterns, another method which
is about Attention Transfer [Zagoruyko, Komodakis, 2016] focuses more on transferring the attention
information in CNNs from the teacher network to the student model, by comparing the attention map
of student network and ensuring that they match the attention map of teacher network. This method is
especially helpful for training CNNs.

Similarly, instead of focusing on neuron response as proposed in Neuron Selectivity Transfer,
another approach [Heo et al., 2018] is to transfer activation boundaries formed by hidden layers, by
looking if the neurons are activated or not. In case the teacher and student networks have different
number of neurons, a connector function is used to map them. And it eventually allows the method to
work even when architectures are different. This method can be applied to CNNs as well by considering
hidden neuron responses as spatial dimensions. The loss function is adjusted to sum over all spatial
locations, and a 1 × 1 convolutional layer is used as the connector function.

Relational knowledge distillation
In another approach [Yim et al., 2017], the student network instead of learning the intermediate

results as proposed in FitNets, learns the method of solution. The flow of solution procedure (FSP)
Matrix captures the flow of information by representing the relationship between features extracted by
layers on deep neural network. It calculates how the information from one layer influences another layer
by computing the inner products across layers, the FSP matrix effectively captures how the features
(or activations). High values in the FSP matrix indicate strong influence, which means that the features
extracted in one layer are critical for the other layer, while low values represent weak relationship. This
approach provides better generalization to student network than teaching the intermediate results.

In Relational Knowledge Distillation [Park et al., 2019], the relationship between the outputs
are also taken into consideration i. e. instead of individual mapping of outputs between teacher and
student models, this approach focuses on transferring the relational structure of the outputs. Relational
Knowledge Distillation introduces two main loss functions: Distance-wise Loss and Angle-wise Loss.
Distance-wise loss function calculates the Euclidean distance between the outputs of teacher and student
models which helps student learn the relative distances between outputs. And Angle-wise loss function
measures the angles between triples of outputs which helps transfer more complex information as they
capture the relative orientation and structure of the data in high-dimensional space. Figure 11 shows
the difference in outputs mapping in conventional knowledge distillation and relational knowledge
distillation.

Conclusions

In conclusion, deploying neural networks on lite devices is a fast-growing field with many new
developments. The discussed techniques help reduce the size and computations required for neural
networks ensuring that models can run efficiently on devices with limited power and processing
capabilities. The recent developments focus more on automation techniques for implementing these
methods reducing the need for manual intervention and making the process more scalable. Further
advancements in these areas can include optimization techniques that are more automated and adaptable
to different hardware platforms and emerging hardware innovations, such as specialized AI chips.
Moreover, the discussed techniques can be refined to maintain accuracy as models become smaller and
faster.

2024, Т. 16, № 7, С. 1601–1619

1616 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

Figure 11. A representation of mapping between outputs in conventional knowledge distillation and outputs in
relational knowledge distillation

References

Ahn H., Chen T., Alnaasan N., Shafi A., Abduljabbar M., Subramoni H., Panda D. K. Performance
characterization of using quantization for DNN inference on edge devices: extended version //
arXiv preprint. — 2023. — arXiv:2303.05016

Argüello Ron D., Freire P. J., Prilepov J. E. Performance evaluation of quantized neural networks on
FPGAs // 2022.

Banner R., Nahshan Y., Hoffer E., Soudry D. ACIQ: analytical clipping for integer quantization of
neural networks // CoRR. — 2018. — https://arxiv.org/abs/1810.05723v1

Bengio Y., Léonard N., Courville A. C. Estimating or propagating gradients through stochastic neurons
for conditional computation // CoRR. — 2013. — http://arxiv.org/abs/1308.3432

Bondarenko Y., Nagel M., Blankevoort T. Quantizable transformers: removing outliers by helping
attention heads do nothing // arXiv preprint. — 2023. — https://arxiv.org/abs/2306.12929

Brock A., Lim T., Ritchie J. M., Weston N. SMASH: one-shot model architecture search through
hypernetworks // CoRR. — 2017. — http://arxiv.org/abs/1708.05344

Cai H., Zhu L., Han S. ProxylessNAS: direct neural architecture search on target task and hardware //
CoRR. — 2018. — http://arxiv.org/abs/1812.00332

Capotondi A., Rusci M., Fariselli M., Benini L. CMix-NN: mixed low-precision CNN library for
memory-constrained edge devices // IEEE Transactions on Circuits and Systems II: Express
Briefs. — 2020. — Vol. 67, No. 5. — P. 871–875. — DOI: 10.1109/TCSII.2020.2983648

Chen T., Goodfellow I., Shlens J. Net2Net: accelerating learning via knowledge transfer // arXiv
preprint. — 2016. — arXiv:1511.05641

Dai S., Venkatesan R., Ren H., Zimmer B., Dally W. J., Khailany B. VS-quant: per-vector
scaled quantization for accurate low-precision neural network inference // CoRR. — 2021. —
https://arxiv.org/abs/2102.04503

Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L. Imagenet: a large-scale hierarchical image
database // 2009 IEEE conference on computer vision and pattern recognition. — 2009. —
P. 248–255.

Drachman D. A. Do we have brain to spare? // Neurology. — 2005. — Vol. 64, No. 12. — P. 2004-5. —
DOI: 10.1212/01.WNL.0000166914.38327.BB

Elsken T., Metzen J. H., Hutter F. Neural architecture search: A survey // arXiv preprint. — 2019. —
arXiv:1808.05377

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1617

Famili A., Lao Y. Deep neural network quantization framework for effective defense against
membership inference attacks // Sensors. — 2023. — Vol. 23, No. 18. — P. 7722. — DOI:
10.3390/s23187722

Garofalo A., Rusci M., Conti F., Rossi D., Benini L. PULP-NN: Accelerating quantized neural
networks on parallel ultra-low-power RISC-V processors // Philosophical Transactions of the
Royal Society A. — 2020. — DOI: 10.1098/rsta.2019.0155

Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. A survey of quantization methods
for efficient neural network inference // arXiv preprint. — 2021. — arXiv:2103.13630

Han Q., Hu Y., Yu F., Yang H., Liu B., Hu P., Gong R., Wang Y., Wang R., Luan Z., Qian D. Extremely
low-bit convolution optimization for quantized neural network on modern computer architectures //
Proceedings of the 49th International Conference on Parallel Processing. — 2020. — P. 38. — DOI:
10.1145/3404397.3404407

Han S., Pool J., Tran J., Dally W. J. Learning both weights and connections for efficient neural
networks // CoRR. — 2015. — http://arxiv.org/abs/1506.02626

Han S., Mao H., Dally W. J. Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding // arXiv preprint. — 2016. —
https://arxiv.org/abs/1510.00149

Hawks B., Duarte J., Fraser N. J., Pappalardo A., Tran N., Umuroglu Y. Ps and Qs: quantization-aware
pruning for efficient low latency neural network inference // Frontiers in Artificial Intelligence. —
2021.

He Y., Han S. ADC: automated deep compression and acceleration with reinforcement learning //
CoRR. — 2018. — http://arxiv.org/abs/1802.03494

He Y., Zhang X., Sun J. Channel pruning for accelerating very deep neural networks // CoRR. —
2017. — http://arxiv.org/abs/1707.06168

Heo B., Lee M., Yun S., Choi J. Y. Knowledge transfer via distillation of activation boundaries formed
by hidden neurons // CoRR. — 2018. — http://arxiv.org/abs/1811.03233

Hinton G., Vinyals O., Dean J. Distilling the knowledge in a neural network // arXiv preprint. —
2015. — https://arxiv.org/abs/1503.02531

Horowitz M. 1.1 Computing’s energy problem (and what we can do about it) // 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC). — 2014. — P. 10–14. — DOI:
10.1109/ISSCC.2014.6757323

Howard A. G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H.
MobileNets: efficient convolutional neural networks for mobile vision applications // CoRR. —
2017. — http://arxiv.org/abs/1704.04861

Hu H., Peng R., Tai Y.-W., Tang C.-K. Network trimming: a data-driven neuron pruning approach
towards efficient deep architectures // CoRR. — 2016. — http://arxiv.org/abs/1607.03250

Huang Z., Wang N. Like what you like: knowledge distill via neuron selectivity transfer // CoRR. —
2017. — http://arxiv.org/abs/1707.01219

Huttenlocher P. R. Morphometric study of human cerebral cortex development // Neuropsychologia. —
1990. — Vol. 28, No. 6. — P. 517–527.

Jacob B., Kligys S., Chen B., Zhu M., Tang M., Howard A. G., Adam H., Kalenichenko D. Quantization
and training of neural networks for efficient integer-arithmetic-only inference // CoRR. — 2017. —
http://arxiv.org/abs/1712.05877

Jain A., Bhattacharya S., Masuda M., Sharma V., Wang Y. Efficient execution of quantized deep
learning models: a compiler approach // arXiv preprint. — 2020. — arXiv:2006.10226

Krishnamoorthi R. Quantizing deep convolutional networks for efficient inference: A whitepaper //
CoRR. — 2018. — http://arxiv.org/abs/1806.08342

2024, Т. 16, № 7, С. 1601–1619

1618 S. A.Khan, S. Shulepina, D. Shulepin, R.A. Lukmanov

Krizhevsky A., Hinton G. Learning multiple layers of features from tiny images. — Toronto, ON,
Canada, 2009.

Kuzmin A., Nagel M., van Baalen M., Behboodi A., Blankevoort T. Pruning vs quantization: which is
better? // arXiv preprint. — 2024. — https://arxiv.org/abs/2307.02973

LeCun Y., Denker J., Solla S. Optimal brain damage // Advances in Neural Information Processing
Systems / D. Touretzky (Ed.). — 1989. — Vol. 2.

Lee J., Yu M., Kwon Y., Kim T. Quantune: Post-training quantization of convolutional neural networks
using extreme gradient boosting for fast deployment // Future Generation Computer Systems. —
2022. — Vol. 132. — P. 124–135. — DOI: 10.1016/j.future.2022.02.005

Li P., Yang J., Islam M. A., Ren S. Making AI less “thirsty”: uncovering and addressing the secret
water footprint of AI models // arXiv. — 2023. — arXiv:2304.03271

Li T., Ma Y., Endoh T. From algorithm to module: adaptive and energy-efficient quantization method
for edge artificial intelligence in IoT society // IEEE Transactions on Industrial Informatics. —
2023. — Vol. 19, No. 8. — P. 8953–8964.

Liang T., Glossner J., Wang L., Shi S., Zhang X. Pruning and quantization for deep neural network
acceleration: a survey // arXiv preprint. — 2021. — arXiv:2101.09671

Lin J., Chen W.-M., Lin Y., Cohn J., Gan C., Han S. MCUNet: tiny deep learning on IoT devices //
CoRR. — 2020. — https://arxiv.org/abs/2007.10319

Lin J., Zhu L., Chen W. M., Wang W. C., Han S. Tiny machine learning: progress and futures
[feature] // IEEE Circuits and Systems Magazine. — 2023. — Vol. 23, No. 3. — P. 8–34. — DOI:
10.1109/MCAS.2023.3302182

Lin M., Wang P., Sun Z., Chen H., Sun X., Qian Q., Li H., Jin R. Zen-NAS: a zero-shot NAS for
high-performance deep image recognition // CoRR. — 2021. — https://arxiv.org/abs/2102.01063

Lin Y., Yang M., Han S. NAAS: neural accelerator architecture search // CoRR. — 2021. —
https://arxiv.org/abs/2105.13258

Liu H., Simonyan K., Yang Y. DARTS: differentiable architecture search // CoRR. — 2018. —
http://arxiv.org/abs/1806.09055

Liu Z., Li J., Shen Z., Huang G., Yan S., Zhang C. Learning efficient convolutional networks through
network slimming // CoRR. — 2017. — URL: http://arxiv.org/abs/1708.06519

Mao H., Han S., Pool J., Li W., Liu X., Wang Y., Dally W. J. Exploring the granularity of sparsity
in convolutional neural networks // 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). — 2017. — P. 1927–1934. — DOI: 10.1109/CVPRW.2017.241

Mishra A. K., Latorre J. A., Pool J., Stosic D., Stosic D., Venkatesh G., Yu C., Micikevicius P.
Accelerating sparse deep neural networks // CoRR. — 2021. — https://arxiv.org/abs/2104.08378

Nagel M., van Baalen M., Blankevoort T., Welling M. Data-free quantization through weight
equalization and bias correction // CoRR. — 2019. — http://arxiv.org/abs/1906.04721

Novac P.-E., Boukli Hacene G., Pegatoquet A., Miramond B., Gripon V. Quantization and deployment
of deep neural networks on microcontrollers // Sensors. — 2021. — Vol. 21, No. 9. — DOI:
10.3390/s21092984

Park W., Kim D., Lu Y., Cho M. Relational knowledge distillation // CoRR. — 2019. —
http://arxiv.org/abs/1904.05068

Rokh B., Azarpeyvand A., Khanteymoori A. A comprehensive survey on model quantization for deep
neural networks in image classification // ACM Trans. Intell. Syst. Technol. — 2023. — Vol. 14,
No. 6. — P. 97. — DOI: 10.1145/3623402

Romero A., Ballas N., Ebrahimi Kahou S., Chassang A., Gatta C., Bengio Y. FitNets: hints for thin
deep nets // arXiv preprint. — 2015. — https://arxiv.org/abs/1412.6550

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Review of algorithmic solutions for deployment . . . 1619

Rouhani B., Zhao R., Elango V., Shafipour R., Hall M., Mesmakhosroshahi M., More A., Melnick L.,
Golub M., Varatkar G., Shao L., Kolhe G., Melts D., Klar J., L’Heureux R., Perry M., Burger D.,
Chung E., Deng Z., Naghshineh S., Park J., Naumov M. With shared microexponents, a little
shifting goes a long way // arXiv preprint. — 2023. — https://arxiv.org/abs/2302.08007

Rusci M., Capotondi A., Benini L. Memory-driven mixed low precision quantization for enabling deep
network inference on microcontrollers // CoRR. — 2019. — http://arxiv.org/abs/1905.13082

Sakr C., Dai S., Venkatesan R., Zimmer B., Dally W. J., Khailany B. Optimal clipping and magnitude-
aware differentiation for improved quantization-aware training // arXiv preprint. — 2022. —
https://arxiv.org/abs/2206.06501

Srinivas S., Kuzmin A., Nagel M., van Baalen M., Skliar A., Blankevoort T. Cyclical pruning for sparse
neural networks // CoRR. — 2022. — https://arxiv.org/abs/2202.01290

Vaswani A. Attention is all you need // Advances in Neural Information Processing Systems. — 2017.
Verma G., Gupta Y., Malik A. M., Chapman B. Performance evaluation of deep learning compilers

for edge inference // 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). — 2021. — P. 858–865.

Walsh C. A. Peter Huttenlocher (1931–2013) // Nature. — 2013. — Vol. 502, No. 7470. — P. 172. —
DOI: 10.1038/502172a

Wang H., Wu Z., Liu Z., Cai H., Zhu L., Gan C., Han S. HAT: hardware-aware transformers for efficient
natural language processing // CoRR. — 2020. — arXiv:2005.14187

Wang P., Chen W., He X., Chen Q., Liu Q., Cheng J. Optimization-based post-training quantization
with bit-split and stitching // IEEE Transactions on Pattern Analysis & Machine Intelligence. —
2023. — Vol. 45, No. 02. — P. 2119–2135. — DOI: 10.1109/TPAMI.2022.3159369

Wen W., Wu C., Wang Y., Chen Y., Li H. Learning structured sparsity in deep neural networks //
CoRR. — 2016. — http://arxiv.org/abs/1608.03665

Wu H., Judd P., Zhang X., Isaev M., Micikevicius P. Integer quantization for deep learning inference:
principles and empirical evaluation // arXiv. — 2020. — https://arxiv.org/abs/2004.09602

Yang T.-J., Howard A. G., Chen B., Zhang X., Go A., Sze V., Adam H. NetAdapt: platform-aware neural
network adaptation for mobile applications // CoRR. — 2018. — http://arxiv.org/abs/1804.03230

Yim J., Joo D., Bae J., Kim J. A gift from knowledge distillation: fast optimization, network
minimization and transfer learning // 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). — 2017. — P. 7130–7138. — DOI: 10.1109/CVPR.2017.754

Zagoruyko S., Komodakis N. Paying more attention to attention: improving the performance
of convolutional neural networks via attention transfer // CoRR. — 2016. —
http://arxiv.org/abs/1612.03928

Zhu C., Han S., Mao H., Dally W. J. Trained ternary quantization // arXiv. — 2017. —
https://arxiv.org/abs/1612.01064

Zoph B., Le Q. V. Neural architecture search with reinforcement learning // CoRR. — 2016. —
http://arxiv.org/abs/1611.01578

2024, Т. 16, № 7, С. 1601–1619

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /RUS ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

