Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Метод тяжелого шарика с усреднением
Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"