KOMITBIOTEPHBIE UCCJIEJOBAHUS
Y MOJIEJIMPOBAHUE 2022 T. 14 Ne 2 C. 277-308 KnaM
DOI: 10.20537/2076-7633-2022-14-2-277-308

MATEMATHYECKHE OCHOBBI 1 YUCJIEHHBIE METOAbI MOJAEJITUPOBAHUSA

VIIK: 519.6

MeTona TsKeJI0ro mapuKa ¢ ycpeaHeHueM

M. IO. Janunosa'??, I. C. ManunoBckuii®?

"MuctutyT npo6nem ynpasnenus um. B. A. TpanesuukoBa Poccuiickoit akajeMun Hayk,
Poccus, 117997, . Mocksa, yi. [Ipodcoro3nas, 1. 65
2MOCKOBCKHil (pH3HKO-TEXHMYECKHH HHCTHTYT (HAIMOHANBHBII HCCIIEN0BATENBCKHN YHUBEPCHTET),
Poccus, 117303, . Mocksa, yi. Kepaenckas, a. la, xopr. 1
3Hay4HO-TeXHONOTHYECKUil YHUBEPCUTET UMEHH KOpoIs AGIaiibl,
KoponesctBo Caynosckast Apasust, 23955-6900, Tysan

E-mail: # danilovamarinal 5@gmail.com, ® grigorii.malinovskii@kaust.edu.sa

Honyueno 18.11.2021.
IHpunsmo x nybruxayuu 13.02.2022.

MeTo/ibl ONITUMHU3AIIMH TIEPBOTO TOPS/IKA SIBISIFOTCS] BAXXHBIM PA0OYMM HHCTPYMEHTOB JUIS HIMPOKOTO CIIEK-
Tpa COBPEMEHHBIX NPHIOKEHUN B Pa3HBIX 0OJNACTSIX, CPEAM KOTOPBIX MOXKHO BBIACIUTH YKOHOMUKY, (PU3HKYy,
Omonoruro, MamMHHOE O0y4yeHHe W yrpasieHne. Cpean METOIOB MEPBOTO MOpsAIKa 0cOO0TO BHUMAHHUS 3aCITy-
JKMBAIOT YCKOPEHHBIE (MOMEHTHBIE) METO/IBI B CHITY MX MPAKTUYECKOH 3((EKTUBHOCTH. METO/T TSHKEIIOTO [IapHuKa
(heavy-ball method — HB) — ouH U3 nepBbIX yCKOpEeHHBIX MeTO/10B. JlaHHBIN MeTox ObuT pazpaboran B 1964 1.,
U JUIs HETO OBUI MPOBEJCH aHAIU3 CXOAMMOCTH JUIS KBaJIPATHYHBIX CHUJIBHO BBIMYKIBIX (yHKIui. C Tex mop
OBUIH TIPEIUIOKCHBI M IPOAaHAIN3UPOBaHbl pasHblie BapuanThl HB. B wactHoctn, HB m3Becten cBoei mpocro-
TON peanu3anu U SPPEKTUBHOCTHIO MPU PEIICHUH HEBBIMYKIbIX 3amad. OfHAKO, KaK U JIPyrHe MOMEHTHBIE
METO/IbI, OH UMEET HEMOHOTOHHOE MOBe/ieHne; Ooliee Toro, mpu cxoaumocti HB ¢ onTumanbabiMu napamerpa-
MU HaOJIOaeTCsl HEKeaTeIbHOE sBJICHNE, Ha3biBaeMoe MUK-3(dexToM. UToObI peruTh 3Ty mpodiieMy, B 3TOH
CTaThbe MbI pacCMaTpHBacM yCpPEIHEHHYIO BEpCHIO MeToja Tspkesoro mapuka (averaged heavy-ball method —
AHB). MBI noka3biBaeM, 49TO s KBaapaTH4uHbIX 3amad AHB wmMeeT MeHbIiee MakcHMabHOE OTKIOHEHHE OT
peuienust, uem HB. Kpome Toro, 1u1st 00LIMX BBIMYKIIBIX U CHIBHO BBIMYKIIbIX (DYHKIHH J0Ka3aHbl HEYCKOPEHHBIC
ckopoctH riodanbHoi cxomumocti AHB, ero Bepcun WAHB co B3BerieHHBIM ycpeaHeHueM, a takxe it AHB
¢ pecrapramu R-AHB. Hackosbpko HaM M3BECTHO, Takue rapantuu it HB ¢ ycpemHeHnem He ObUTH SBHO JTOKa-
3aHbI JJISI CUJIBHO BBIMYKIIBIX 3a/1a4 B CYIIECTBYIONIMX paborax. HakoHel, MbI IPOBOAUM HECKOJIBKO YHUCIICHHBIX
IKCIIEPUMEHTOB JUII MHHUMHU3AIMU KBAJPATUYHBIX U HEKBAJAPATHYHBIX (PYHKIIHIA, 4TOOBI TPOJECMOHCTPUPOBATH
MpeUMYyIIeCcTBa MCHONb30BaHus ycpeaneHus st HB. Kpome Toro, Mbl Tarke MpOTECTHPOBANH €Ie OJHY MO-
mudukanuio AHB, HasbiBaemyto meTonoMm tail-averaged heavy-ball (TAHB). B skcniepumenTax Mbl HaOIrOAAIH,
uyro HB ¢ mpaBuibHO HACTPOCHHON CXEMOM YCpeaHEeHUsT CXOAUTCs ObicTpee, uem HB 6e3 ycpeatenus, u umeer
MEHBIIINE OCIUIUISIIUH.
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First-order optimization methods are workhorses in a wide range of modern applications in economics,
physics, biology, machine learning, control, and other fields. Among other first-order methods accelerated and
momentum ones obtain special attention because of their practical efficiency. The heavy-ball method (HB) is
one of the first momentum methods. The method was proposed in 1964 and the first analysis was conducted for
quadratic strongly convex functions. Since then a number of variations of HB have been proposed and analyzed.
In particular, HB is known for its simplicity in implementation and its performance on nonconvex problems.
However, as other momentum methods, it has nonmonotone behavior, and for optimal parameters, the method
suffers from the so-called peak effect. To address this issue, in this paper, we consider an averaged version of
the heavy-ball method (AHB). We show that for quadratic problems AHB has a smaller maximal deviation from
the solution than HB. Moreover, for general convex and strongly convex functions, we prove non-accelerated
rates of global convergence of AHB, its weighted version WAHB, and for AHB with restarts R-AHB. To the
best of our knowledge, such guarantees for HB with averaging were not explicitly proven for strongly convex
problems in the existing works. Finally, we conduct several numerical experiments on minimizing quadratic and
nonquadratic functions to demonstrate the advantages of using averaging for HB. Moreover, we also tested one
more modification of AHB called the tail-averaged heavy-ball method (TAHB). In the experiments, we observed
that HB with a properly adjusted averaging scheme converges faster than HB without averaging and has smaller
oscillations.
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Introduction

First-order optimization methods have good convergence guarantees and are simple to
implement. Therefore, they are widely used in various applications. In particular, accelerated or
first-order momentum methods such as Nesterov’s method [Nesterov, 1983] and Heavy-Ball method
[Polyak, 1964] and their various extensions are prevalent in some practically essential tasks, e.g.,
training of deep neural networks.

Due to its efficiency in solving nonconvex optimization problems [Danilova et al., 2020], heavy-
ball method has gained significant attention in recent years. As a result, a number of its modifications
were proposed, including stochastic [Yang, Lin, Li, 2016; Taylor, Bach, 2019; Defazio, 2020], zeroth-
order [Gorbunov et al., 2019], and distributed variants [Yu, Jin, Yang, 2019; Mishchenko et al., 2019],
to mention a few.

However, even for simple (strongly) convex problems, accelerated/momentum methods have
nonmonotone behavior. For example, in the recent paper [Danilova, Kulakova, Polyak, 2018], the
authors show that the heavy-ball method (HB) with optimal parameters has the so-called peak-
effect even for simple quadratic minimization problems. This means that in this case the distance
to the solution during the initial iterations of HB. Moreover, the maximal distance is proportional
to v [Danilova, Kulakova, Polyak, 2018; Mohammadi, Samuelson, Jovanovi¢, 2021], where x is the
condition number of the problem. Therefore, for ill-conditioned problems (x > 1) peak-effect can be
significant.

Contributions

To address this issue, in this work, we consider an averaged version of the Heavy-Ball method
called Averaged heavy-ball method (AHB). We study the maximal deviation of this method for
quadratic functions and prove the global convergence guarantees in the convex and strongly convex
(not necessarily quadratic) cases for AHB and its version based on the weighted averaging (WAHB).
For quadratic functions with a specific property of the spectrum, our theoretical results show that there
exists a choice of parameters for AHB such that the momentum parameter § is sufficiently large but
the maximal deviation is significantly smaller than for HB with optimal parameters. We derive global
complexity results for AHB and WAHB matching the best-known ones for HB. To the best of our
knowledge, we prove the first global convergence results for HB with averaging in the strongly convex
case (see the summary in Table 1). Moreover, our numerical experiments corroborate our theoretical
observations and show that HB with a properly adjusted averaging scheme converges faster than HB
without averaging and has smaller oscillations.

Preliminaries

We focus on the following minimization problem

min f(x), &)

xeR”

where f: R" — R is a L-smooth and u-strongly convex function.

Definition 1 (L-smoothness). A differentiable function f: R” — R is called L-smooth for some
constant L > 0 if its gradient is L-Lipschitz, i.e., for all x, y € R"

IVf() = VWl < Lilx =yl 2

Definition 2 (u-strong convexity). A differentiable function f: R” — R is called u-strongly
convex for some constant u > 0 if for all x, y € R” the following inequality holds:

FO) > F) + (VA y—x) + gny — 2. 3)
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Throughout the paper we use standard notation for the optimization literature [Polyak, 1987;
Nesterov, 2018], e.g., x* denotes the solution of (1), R, = [lx, — x"[|, is the distance from the starting
point to the solution, » = %‘ is the condition number of the problem.

Related work

Algorithm 1. Heavy-Ball method (HB)

Input: starting points x,, x, (by default x, = x,), number of iterations N, stepsize @ > 0, momentum
parameter S € [0, 1]
I: fork=0,..., N—1do
2: X =X —aVf(x)+B(x, —x.,,)
3: end for
Output: x,

Convergence guarantees for the heavy-ball method

The heavy-ball method [Polyak, 1964] (HB, Algorithm 1) is the first optimization method with
momentum proposed in the literature. In [Polyak, 1964], the author proves the local O(\/% log(%))

convergence rate for twice continuously differentiable L-smooth and p-strongly convex functions. The
first global convergence results for HB are obtained in [Ghadimi, Feyzmahdavian, Johansson, 2015],

2
where the authors derive global O (%) convergence rate of HB and AHB for L-smooth convex (u = 0)

functions and O(é log(é)) convergence rate of HB for L-smooth and u-strongly convex functions.
Although these results establish the global convergence of HB (and AHB in the convex case), the rates
are non-accelerated, i. e., they are not optimal [Nemirovskij, Yudin, 1983] unlike the local convergence
rate derived in [Polyak, 1964]. This issue is partially resolved in [Lessard, Recht, Packard, 2016], where
the authors prove that HB converges with the asymptotically accelerated rate for strongly convex
quadratic functions. Moreover, they also show that there exists a non-twice differentiable strongly
convex function such that HB does not converge for this objective. Next, using Performance Estimation
Problem tools [Taylor, Hendrickx, Glineur, 2017; Taylor, Van Scoy, Lessard, 2018; Taylor, Bach, 2019],
one can show that for standard choices of parameters HB has the non-accelerated rate of convergence.
However, the following question remains open: does there exist a choice of parameters for HB such
that the method converges globally with the accelerated rate for twice differentiable L-smooth and
(strongly) convex functions? Although we do not address this question in our work, we highlight it
here due to its theoretical importance.

Nonmonotone behavior of the heavy-ball method

From the classical analysis of HB [Polyak, 1964], it is known that the following choice of
parameters « and 3 ensures the best convergence rate for HB up to the numerical constant factors:

VI - \/ﬁ]z
VL + i)

ES 4 K
a=qa = —» ﬂ = 18 = (
(\/Z + \/ﬁ)
However, recently it was shown [Danilova, Kulakova, Polyak, 2018] that HB with optimal parameters
suffers from the so-called peak effect at the beginning of the convergence. In particular, the maximal

“

deviation can be of the order Vx = \/% . Similar results were also derived in [Mohammadi, Samuelson,

Jovanovi¢, 2021]. However, in practice, it is worth mentioning that the optimal parameters from (4)
are rarely used and, as a result, the nonmonotonicity of HB is not that significant.

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE
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Maximal deviations on quadratic problems

In this section, we consider the instance of (1) with f(x) being a quadratic function. That is, we
assume that f(x) = %xTAx, where A € S}, is an n X n positive definite matrix. For this problem, we
prove that the averaged heavy-ball method with a certain choice of parameters has a smaller deviation of
the iterates from the optimum at initial iterations than the heavy-ball method with optimal parameters.

The heavy-ball method

Recently it was shown [Danilova, Kulakova, Polyak, 2018] that HB with optimal parameters (4)
suffers from the so-called peak effect at the beginning of the convergence. In particular, according to
the following theorem, the maximal deviation can be of the order +/x.

Theorem 1 (Theorem 1 from [Danilova, Kulakova, Polyak, 2018]). Consider f(x) = %xTAx,
A= diag(,u, Ay A, L), where u < A, < ;<...<A,_, <L Then for X =x' = (1,1, ..., DT
the iterates {x;},., produced by HB with a = ", p = " satisfy

V}?.

max ||x > —
ax [l > 5

)

Algorithm 2. Averaged heavy-ball method (AHB)
Input: starting points x,, x, (by default x, = x,), number of iterations N, stepsize @ > 0, momentum

parameter S € [0, 1]
I: fork=1,..., N—1do

2: X =X —aVf(x)+B(x, —x.,,)
- = . . = K+,
3: Xl = T '—26 X, > One can recurrently implement this step: X, | = —
4: end for l
Output: X,

The averaged heavy-ball method

In this subsection, we consider the modification of HB that returns the average of the iterates
produced by HB. We call the resulting method averaged heavy-ball method (AHB, see Algorithm 2).

We start by showing that for the same initialization, AHB with « = % and not too large 8 has
significantly more minor deviations than HB with optimal parameters when x is sufficiently large under
some assumptions on the spectrum of A.

Theorem 2. Consider f(x) = %xTAx with A = diag (,u, Ay oos A, L), where u < A, < A5 <
<...<A,_, <Land A, > 10, L > 100u. Then for x° = x' = (1,1, ..., DT and for all k > 0 the

2 2
iterates (X}, generated by AHB with a = 1. B¢ [(1 -3 %) , (1 -2 %) ] satisfy

max %, <2. (6)

That is, comparing bounds (5) and (6) for x > 1, we conclude AHB with the parameters from
Theorem 2 has much smaller deviations than HB with parameters from (4). However, Theorem 2 works
only for the particular initialization. The guarantees independent of x°, x' are much more valuable and
that is what we derive in the next subsection.

2022, T. 14, Ne 2, C. 277-308
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Maximal deviation of AHB for arbitrary initialization

Consider the matrix representation of HB update rule:

o [ 5% o [ o
X, = X, X~ X, X, — X,
where

T = (1 +ﬁ)I - aA ‘ _ﬂI c RZnXZn Xl — X c RZn. (8)

1 ‘ 1] ’ X, =X,
Therefore, we have
_ k .
x-x=[0 IT [xo_x]. )
C

For convenience, we also introduce the following notation:
X, —X

Z = k+1 |
X, =X,

Following [Mohammadi, Samuelson, Jovanovi¢, 2021], we study the worst case deviation [|x, — x,||, in
the relation to [|z,ll,, i. €., we focus on the following quantity:

”'xk - x*llz ) ||CTkZ0||2
max sup ————— = _—

= max = maxllCTkll2
k=0 Zy #0 ”Z0||2 k=0 zO:;tO ||Z0”2 >0

that is the largest spectral norm of the matrices CT* for k > 0. Clearly, one can choose Z» 1. €., starting
points x, and x,, in such a way that z is in the direction of the principal right singular vector of CT*
implying [lx, — x|, = ||CTk||2||z0||2. Therefore, ||CTk||2 is a tight and natural measure of the worst case
deviation of the iterates produced by HB. Since this quantity depends on the choice of o and 3, we
denote it as devyg(a, B) := rga()x ICT (e, Bll,-

For AHB we know

We introduce new notation:

Z CT'(@. B)

devppg(a, B) == r£1>ax

2

As for HB, dev,,z(a, B) is also a reasonable measure of the worst case deviation of the iterates
produced by AHB. Moreover, due to Jensen’s inequality and convexity of [|- ||, we have dev ,,5(@, B) <

< devyg(a, B).
Theorem 3. Consider f(x) = %xTAx with A = AT > 0 with eigenvalues A1, < ... < A
A, 2 Fz/l F>14, F < ﬁ n = 100004,. Then the maximal deviation of AHB and HB with a =

n’

1
L

and (1 - \/z) <pB< (1 -F \/7 ) is at least \/_ times smaller than the maximal deviation of HB
with @ = & and B = * given in (4):

2¢ V6
VF?2 -1

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE
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2¢ V6
VF2-1
when the condition number #x is large enough. For example, for x = 10% and F = 200 one can choose

2
B = (1 - %) ~ 096 and get 225 ~ 0,067.

The constant can be sufficiently small and 8 can be sufficiently large at the same time

Convergence guarantees for nonquadratics

In this section, we study the convergence of AHB for problems (1) with (strongly) convex and
smooth objectives. The first global convergence guarantees for HB and AHB in the convex case were
obtained in [Ghadimi, Feyzmahdavian, Johansson, 2015]. In the same paper, the authors derived the
convergence rate for HB in the strongly convex case. See the summary of known results in Table 1.

In contrast, for HB with averaging, there are no convergence results in the strongly convex case.
Below we consider two options to derive such results.

Table 1. Summary of known and new results on the maximal deviation and complexity bounds for HB and
its variants with averaging. Column “Max. deviation” contains the results on the maximal deviation of the
methods on quadratic minimization problems (see Section 2 for details), columns “Complexity, u = 0” and
“Complexity, 4 > 0” show iteration complexity bounds for the methods applied to (1) with f being L-smooth
and convex / u-strongly convex but not necessarily quadratic, i. e., the number of iterations needed to guarantee
that the output of the method X satisfies f(x)— f(x,) < & where x, is the solution of (1). Our results are highlighted
in green. Notation: x = l% (condition number), Ay = f(xy) = f(x), Ry = llxy — x,ll,

| Method | Citation | Max. deviation Complexity, u = 0 Complexity, u >0 |
[Danilova, Kulakova, Polyak,
HB 2018; Ghadimi, VE(1) LR} (5  Jog A 3)
Feyzmahdavian, Johansson, 2e & 1- E
2015]
[Ghadimi, Feyzmahdavian, LR} BLR}
AHB Johansson, 2015] N/A s T Tpe N/A
7 LR?  LR2\B R?
AHB Thm. 3 & 4 & 5 o G T [+ £8) 10 42
= LR LR2VB LR2(1+-E
WARB Thm. 4 = = T (% * %)log O(TW)

() This result is obtained for HB with optimal parameters from (4) (see Theorem 1).

® The complexity bound is obtained for iteration-dependent parameters: 8, = 5, @, = 7.

©) This result holds for « € (0, %), B e [O, V(= aLl)(1 - a,u)]. When % > 1 this assumption implies that 8 < 0,75. In
practical applications, e. g., training deep neural networks, much larger values for parameter § are usually used.

) The result holds for a special class of quadratic functions described in Theorem 3. Parameters @ and 3 for AHB are given
there as well. Here F is such that 4, > F’ 2u, F > 14, F < +/x, where 4, is the second smallest eigenvalue of the Hessian
matrix. For large enough % and F one can guarantee that maximal deviation for AHB with parameters from Theorem 3 is
much smaller than for HB with optimal parameters from (4).

©) The complexity bound is proven Restarted version of AHB (R-AHB, Algorithm 4).

© See (4) and Remark 1.

Weighted averaged heavy-ball method

One way to obtain them is to change the averaging weights, see the weighted averaged heavy-
ball method (WAHB, Algorithm 3). When w, = 1 for all kK > 0 WAHB recovers AHB. However, it is
natural to choose larger w, for larger k: for such a choice of w, the method gradually “forgets” about
the early iterates that should lead to faster convergence. Guided by this intuition, we provide a rigorous
analysis of WAHB with gradually increasing w,.

2022, T. 14, Ne 2, C. 277-308
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Algorithm 3. Weighted averaged heavy-ball method (WAHB)

Input: number of iterations N, stepsize a > 0, momentum parameter 3 € [0, 1], starting points x,, x,
(by default x; = x, — @V f(x,)), weights for the averaging {wk}kN=0 >0
fork=1,...,N—1do

2: X =X —aVf(x)+ B, —x.,,)
k+1 k+1 X,
- _ 1 _ .= _ WiEewe 1
Tt = W S Wik where W, = X w, > Recurrent analog: x| = ——5~
ol far =0 k+1
4: end for
Output: Xy

REMARK 1. We emphasize that the proof of Theorem 3 holds for non-uniform averaging as well. That
is, under assumptions of Theorem 3 we have

2¢ V6 R
devyyapg(@, B) < devyg(a, B) < - dev,g(a*, B,

VEF2 —
where

devyyaps(@. B) = max

1 k
— > wCT'(, B)
Wk =0 2

In our derivations, we rely on the following representation of the update rule of HB with x, =
=x, — aVf(xy):
X1 = X =My my =Py +aVf(x), m_ =0. (11)

Indeed, since m, | = x,_, — x, for all k > 0 (for convenience, we use the notation x_; = x,,) we have

e
Merl = X =My = X — a/Vf(xk) _ﬁmk_l =X~ a/Vf(xk) +ﬁ(xk - xk+1)'

Next, following [Mania et al., 2015; Yang, Lin, Li, 2016], we consider perturbed or virtual iterates:

X =X — Lmk_l, k>0. (12)

1-p

We notice that these iterates are not computed explicitly in the method. However, they turn out to be
useful in the analysis because of the following relation: for all k£ > 0

~ 1
K1 = Xw1 — mmk =%~ mmk

_ ! -
_% 4 %ﬁmk_l ~ 7 (B eV ) = % - ﬁVf(xk). (13)

Using this notation, we derive the following lemma measuring one iteration progress of HB.

Lemma 1. Assume that f is L-smooth and u-strongly convex. Let a and B satisfy

0<ax 14_—L/3, Bel0, ). (14)

Then, for all k > 0,

a

2(1-p)

1% _ _ 3Lap?
= ﬁ%—mﬁﬂmﬂ—&@+—4@wm46 (15)

C2(1-B) (1-p)>

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE
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As the next step, it is natural to sum up inequalities (15) for k =0, 1, 2, ..., K with weights w, =
—(k
= (1 - 2(‘11—’_‘@) (D to get the bound on f(Xg) — f(x,). However, in this case, we obtain
3La/ﬁ2
ﬁPEZWHkﬁ

in the upper bound for f(xx) — f(x,). Therefore, we need to estimate this sum and this is exactly what
the next lemma is about.

Lemma 2. Assume that f is L-smooth and u-strongly convex. Let a and [ satisfy

(1-B7

0 < , 0, 1). 16
<o g B0 (16
Then, for all k > 0,
3L g
Attt }}m|km T 2 (1 = ), (7)
k=0

—(k+1)
— au
where Wk = (1 - 2(1_—ﬁ))

Combining Lemmas 1 and 2, we obtain the following result.

Theorem 4. Assume that f is L-smooth and u-strongly convex. Let a and [ satisfy

. f1-8 (1-p7
0<a<mln{ i 4L\/§}, Bel0, 1). (18)

Then, after K > 0 iterations of WAHB, we have
401 = Blixy — x5

) = fx) € —— =, (19)
where w, = (1 - z(‘f—‘_‘m)_(kﬂ). That is, if u > 0, then
K41 -p)llx, - x5
- ap 0 112
- <[1- , 2
fG) = fx) ( 2a—m) . 20)
and if u = 0, we have
_ 401 = B)llxy — x5
- fx,) < . 21
FGg) = f(x) K (21)
The following complexity results trivially follow from this theorem.
Corollar 1. Let the assumptions of Theorem 4 hold and
1= -7
@ = min{ —, .
{ 4L 4L.\/3B
Then, to achieve f(Xg)— f(x,) < & for £ > 0 WAHB requires
LR? (1 + B )
L L a-p
o (— + VB )log (22)
uo pd=p) €
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iterations when u > 0, and

& (1 -p)e

LR} LR?
0( L —" \/BJ (23)
iterations when p = 0, where R, > ||x, — x.l|,-
When p = 0 WAHB recovers AHB since w, = 1 by definition. Therefore, in the convex case,
this result establishes the complexity of AHB.
The restarted averaged heavy-ball method

An alternative way to achieve linear convergence in the strongly convex case for the heavy-ball
method with averaging is to use the restarts technique. That is, consider the restarted averaged heavy-
ball method (R-AHB, Algorithm 4). The work of the method is split into stages. Each stage is the run
of AHB from the point obtained at the previous stage, the first stage initializes at the given point.

Algorithm 4. Restarted averaged heavy-ball method (R-AHB)

Input: number of restarts 7, numbers of iterations {N,}
parameters {8,}/_, € [0, 1], starting point x,
I Xy = X,
2. forr=1,...,7do
: Run AHB (Algorithm 2) for N, iterations with stepsize @,, momentum parameter (3,, and starting
points X |, X,_, —,Vf(x,_,). Define the output of AHB by X,.
4: end for
Output: X,

T

-y > 0, momentum

1> stepsizes {a,}

Based on the convergence result for AHB in the convex case, one can get the convergence rate
of R-AHB in the strongly convex case.

Theorem 5. Assume that f is L-smooth and u-strongly convex. Let o, = a, 5, =5, N, = N for
allt=1, ..., T and

1= (1-p)7? | 16(1 = pB)
0<a<mm{ TR 4L@}, Be0, 1), N—{T}. (24)

2
Then, after v = max{{log2 (%ﬂ -1, 1} iterations with R, > |lx, — x,|l, R-AHB produces such
a point x, that f(x.) — f(x,) < &. Furthermore, if

_J1-p a-py
Q’—I‘I‘lln{r, 4L\/§}’

then the total number of AHB iterations equals

2
O((L LB )log 'L%) (25)

-+
uooud=p)

Numerical Experiments

We conducted several numerical experiments to compare the behavior of HB with and without
averaging applied to minimize quadratic functions and solve the logistic regression problem. The code
was written in Python 3.7 using standard libraries.
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Figure 1. Trajectories of HB, AHB, and WAHB applied to minimize a quadratic function from (26) with different
condition numbers x» and dimension n

Quadratic Functions

In this section, we consider three quadratic functions:

1 k
frandom(x) = EXTArandx = (x )TArandx’ (26)
L u n—1 4
— 2 2 2
Peseron() = == o7 + D6 = %7 = 23 |+ S, @7)
i=1
1+
f Toeplitz(‘x) = Ex AToeplitzx’ (28)
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Iesterov K = 10° n = 1000 \ Jroeplit, Kk =4-10° n =1000
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Figure 2. Trajectories of HB, AHB, and WAHB applied to minimize a quadratic functions from (27) and (28)
with condition numbers % ~ 10° and dimension 7 = 1000

where matrix A, = KTK, the elements of matrix A € R™" are independently sampled from the
standard Gaussian distribution, and AToeplitZ € R™" is a Toeplitz with a first row (2, =1, 1, 0, ..., 0).
The function from (27) is a classical function used to derive lower bounds for the complexity of
first-order methods applied to minimize smooth strongly convex functions [Nesterov, 2018].

We run HB with 8 = 0,95 (standard choice of ), AHB and WAHB with g = 0,999 (large ) to
minimize each of these functions. For these methods we used stepsize a = % The weights for WAHB
were chosen as w, = P~ for p = 1,01. Moreover, we also tested HB with optimal parameters from (4).
One can find the results in Figures 1 and 2.

These results show that methods with averaging (AHB and WAHB) converge reasonably well
during the first iterations of the method even with large § = 0,999, which was larger than the optimal 8*
in all our experiments. Moreover, unlike HB with optimal parameters, AHB and WAHB do not suffer
from the peak effect. The absence of peak effect allows us to use HB with averaging for the first
iterates and then restart the method. Finally, we emphasize that HB with 8 = 0,95 converges slower
than WAHB with £ = 0,999 in all our experiments and slower than AHB with 8 = 0,999 in almost all
experiments (except the first one shown in Figure 1). We also tested HB with 8 = 0,999 and observed
very slow convergence for the method in this case.

To conclude, our experiments on quadratic functions highlight the benefits of using AHB and
WAHB with large 8 and standard a = %

Logistic regression with (,-regularization

Next, we also consider logistic regression with ¢,-regularization:

. 1< b

min {f(x) == Zl:l"g(l +exp =y, - (Ax))) + Zlal . (29)
=

where m is the total number of data points/samples, y, € {1, 1} is a label of the ith datapoint,

and A € R is a feature matrix. This function is known to be ¢,-strongly convex and (L + {3)-smooth

with L = Ug’i”;ﬁA), where 0,,,,(A) is the maximal singular value of matrix A. We take the datasets, i.e.,
pairs of (A, {y;}!” ), from LIBSVM library [Chang, Lin, 2011], see the summary of the considered
datasets in Table 2.

We run HB, AHB, and WAHB with different momentum parameters § solve this problem.

Moreover, we also tested a modification of AHB called the tail-averaged heavy-ball method (TAHB, see
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Table 2. Summary of the considered datasets for the logistic regression

a%a | phishing | w8a
m (# of data points) | 32561 11055 49749
d (# of features) 123 68 300

Algorithm 5. Tail-averaged heavy-ball method (TAHB)

Input: starting points x,, x; (by default x, = x,), number of iterations N, stepsize & > 0, momentum
parameter S € [0, 1], tail size s > 0
. fork=1,..., N—-1do

2: X =X —aVf(x)+ B, —x.,,)
1 k+1
— > x;, ifk+1<sys,
k+2 IZ_O: '
3: Xpy1 = - > It is required to store the last s iterates

s—1
- Xy k+12s
s 4
i=0
4: end for
Output: X,

Algorithm 5) with s € {10, 50}." The weights for WAHB were chosen as w, = P for p € {1,1, 1,01}.
Next, we chose parameter 8 from the set {0,9, 0,95, 0,99, 0,999}, and tuned stepsize parameter a €
ef{274,273 272 2711, 2, 4, 8, 16, 32, 64, 128, 256} - % for each method separately for given S8 (and
for given p in the case of WAHB, for given s for TAHB). The result are shown in Figures 3-6.

Figures 3-5. The plots show that for small 3, i.e., 8 = 0,9, 0,95, HB does not have significant
oscillations and WAHB and TAHB have comparable performance. However, for larger B, i.e., 8 =
= 0,99, 0,999, the behavior of HB is signigicantly nonmonotone and oscillations are quite large. In
contrast, WAHB and TAHB have much smaller oscillations and converge faster than HB. These facts
illustrate the advantages of using proper averaging scheme for HB (either in the form of WAHB or
TAHB).

Figure 6. In these plots, we highlight the effect of averaging for large 3. That is, we compare HB
with standard and commonly used choice of 8 (8 = 0,95) and TAHB with g = {0,95, 0,99}. Moreover,
for ¢, > 0 we also tested HB with optimal parameters from (4). The results for all considered datasets
show that TAHB with 8 = 0,95 has comparable performance with HB and oscillates smaller, while
TAHB with 8 = 0,99 is always slower than TAHB with 8 = 0,95. Next, when £, = m (ill-conditioned
problems), TAHB with 8 = 0,99 is as fast as HB with optimal parameters but has smaller oscillations.
Finally, when ¢, = ﬁ (well-conditioned problems), HB with optimal parameters has negligible
oscillations and shows the best performance. Such behavior is natural since for the well-conditioned
problems HB does not suffer significantly from the nonmonotone behavior and peak-effect.

Conclusion

This paper shows the advantages of using averaging for the heavy-ball method both in theory and
practice. That is, our theory and experiments imply that averaging helps to reduce the oscillations of HB.
Although the derived theoretical convergence guarantees for HB with averaging are not better than the
existing ones for HB, in our experiments, we observe that HB with a properly adjusted averaging
scheme can converge faster than HB without averaging. In particular, we observe this phenomenon

!'In our experiments, TAHB with s > 100 performed significantly worse than TAHB with s = 50. Therefore, we report only
the resuts for s € {10, 50}.
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Figure 3. Trajectories of HB, AHB, WAHB, and TAHB with different momentum parameters 8 applied to solve
the logistic regression problem with £,-regularization for a9a dataset. Stepsize a was tuned for each method and
each choice of 8 (and p, s) separately

when the momentum parameter 3 for averaged versions of HB is chosen to be large enough, e.g.,
larger than the standard choice of 8 = 0,95 and sometimes larger than the optimal choice of 8 from (4).
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Figure 3 (ending)
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Figure 4. Trajectories of HB, AHB, WAHB, and TAHB with different momentum parameters 8 applied to solve
the logistic regression problem with ¢,-regularization for phishing dataset. Stepsize @ was tuned for each
method and each choice of B8 (and p, s) separately
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Figure 5. Trajectories of HB, AHB, WAHB, and TAHB with different momentum parameters 8 applied to solve
the logistic regression problem with ¢,-regularization for phishing dataset. Stepsize @ was tuned for each
method and each choice of 8 (and p, s) separately
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Figure 6. Trajectories of HB with 8 = 0,95 (standard choice of 8) and TAHB with 8 = 0,95 and 8 = 0,99
(large B) applied to solve the logistic regression problem with £,-regularization for dataset from Table 2. Stepsize
parameter « was tuned for each method separately. For £, > 0 we also show the trajectories of HB with optimal
parameters @ = ¢* and 8 = 8* from (4)
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Appendices
Basic inequalities

Forall a, be R"and 2 > 0, g € (0, 1]

llall?  Allbl2
< —— ,
Ka, b)Yl < F + = (30)
lla + bll; < 2llall5 + 2IIb]13, (31)
1
lla +bI* < (1 + Dllal* + (1 + 5) 1bII2, (32)
1
(a. by = 3 (lla + bl = llally ~ lI113). (33)
q -1
(1—5) <l+q, (34)
q q
l1+=]0d-g)<1-=. 35
(1+%)a-a<1-1 (39)
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Auxiliary results

Lemma 3 (Lemma 1 from [Mohammadi, Samuelson, Jovanovi¢, 2021]). Let p, and p, be
the eigenvalues of the matrix M = [‘1‘ 8 and let k be a positive integer. If p, # p,, then we have

Y [p§+1_plf+l 1020} = P5) ]
= — kK k k-1 _  k=1y]
py=pi | Pr=Pr PP OT —py)

Moreover, if p, = p, = p, the matrix MK satisfies

O [ e e
I 7 ¢ e S el b

Missing proofs from Section 2

In this section, for x, we use the upper index for an iteration counter, and the lower index denotes
the component of the vector.

Proof of Theorem 2

Rewriting the update rule of HB for f(x) = %xTAx with A = diag (,u, A
we get

2 ooen Ay, L) with @ =

1
L)

= (1= 2 )y -
= -

n

To solve these recurrences, we consider the corresponding characteristic equations:

(1 - % +,3)p—ﬁ,

2
Je

A
2:(1— = +/3)p—/3,

2 2
Since B < (1 -2 %) < (1 - ’Z‘) the roots of the first equation are

1+B-5+ \/(1 +,8—‘Z‘)2—4,8

p1(w) = >
1+t J(1+p-4) -48
P () = 5 .
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2
Moreover, we have \/(1 +6 - %) —-4B8 < 1 -pB+ %, and, as a consequence, 0 < P, < py(u) < 1.
Next, the first components of iterates produced by HB satisfy
x) = Cipli () + Coph ()
with some constants C,, C, € R. This equation and the choice of the starting points KW= al =
=(1,1,..., 17 imply

C,+Cy=1,
Cip1() + Cypp () = 1,
whence | w w- 1
-p, o, (1) —
c=————— «6,=1-C, = —.
oo - o) "o () = py ()

2 2
Using the formula for C, and g € [(1 -3 ’Z‘) , (1 - 2\/%) ] we derive that C; > 0 and

‘. 1_1+,8—‘Z‘—\/(1+,8—%)2—4,8 | )
2 \/(1+,8—%) — 4B
_1—/3+’i+\/(1+/3—’f) —4/3_1+ 1-p+b
N I R (RV R

._
w
=
|
N
~I=
—
w
=
|
N
=

= — + + .

RN RN N TN

Since L > 100u we can further upper bound the right-hand side of the previous inequality and get

3\/Z
1 1 3 1 1 15 3
Ci <=+ L L, 1115 3
2 2 h_ 4 2 2 4 2
3%‘(4—8\/%) -1

Taking into account that C, > 0 and C, = 1 -C, we derive that |C,| = max{1-C,, C, - 1} < % Putting
all together, we obtain

W] = 1C,08 () + Coph)l < Iy +1Cy <2 Yk > 0.

In the remaining part of the proof, we handle the characteristic equations

b
P’ = (1 -7 +,3)p—[>’,

1
P = (1 - +ﬁ)p—ﬁ,
p*=pBo-p
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Without loss of generality, we consider the equation
2 A
P =(1-2+8)p-p (36)

with 1 € [4,, L]. This equation serves as a characteristic equation for the sequence {y }i=0 € R
satisfying

A
Vir1 = (1 I +ﬁ)yk ~=BYi-i-

2 2
Since 4 > 4, > 10y and B > (1 - 3\/%) , we conclude that g > (1 - \/%) and the characteristic

equation has the complex roots with nonzero imaginary parts:

N P T
. :
L+B— 4 —infap—(1+5-4)
. .

(D) =

(D) =
This implies that |p, ()| = |o,(D)] = VB < 1 and

¥, = Cp5 ) + Coo8 ()

for some complex numbers C,, C,. Let y, =y, = 1. Then,

C,+Cy=1,
Cip, (D) + Copy(D) = 1,
whence
1 - p, () _ -1

C,=1-C,

L o) = oy T h =,

2 2
Using the formula for C, and B € [(1 -3 ’Z‘) , (1 -2 %) ], we derive

‘. 1_1+,8—%—i\/4,8—(1+ﬁ—%)2 . )
2 i\/4ﬁ—(1+,8—%)2
I-B+d+i4-(1+8-2) | 1-p+d
B e
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Then, for the absolute value of C, we have

2\2
4_[1_ H
1 (l+%—,8)2 | (1+L (1 3 L))
=" ot 2 ' 2 Vi
—(-7+ A
4(1—2 %) - 1—Z+(1—2\/%)
4 M ,u2 2 p ,“2
= = + = — + <
2 2 2.2
(2—4\/%) —(2—%—4 ’Z+4‘Z) (4—%—8\/%+4%)(%_4%)
1,6 o) P SR L VY
<1 1+ L L 1 1 25ﬁ+ (L\/Z)+ L
) Y2 ) 1 =
2N (G-Y@E-n) 2y i
1 25 (2 L a1 25 8
s+ 2 (Srn2 E et <o 1+ 21+ 2+ =] <1
2\/ 33(L \/: /1) 2\/ 33( 5 25)
Since
1 1-B+4

we also have |C,| = |C,| < 1, and, as a consequence,
il = 1C105 D) + Cop5 (DI < ICy1 +1C,1 <2 Yk > 0.
This result implies that Ixfl <2forallk>0andi=2,...,n.

k
Finally, since = ﬁ > x' we conclude that
=0

which is equivalent to (6). |

Proof of Theorem 3

To estimate dev,g(a, B) we consider the spectral decomposition of matrix A = UAUT > 0,
where A = diag(4,, ..., 4,) is a diagonal matrix of the eigenvalues of A, 4, < ... < 4,, and U is

a unitary matrix of the eigenvectors of A. Next, without loss of the generality we assume that x* = 0.
Applying the unitary transformation UT to x*, we obtain ¥ = UTx* and

] [ P
SR B
where ‘ ‘
= |Ad+pI-aA | -pI| [UT] 0
Tt [t
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In particular, these formulas imply

R @
|-t -m )
J J j
where
— 1+B—ad. -B
T. = J
J 1 0 ]
for all j=1, ..., n. Moreover, ||CTk||2 = max ||C .’T\k.||2, where C. =[01].
j=lyoun 17 Y

It is easy to see that the eigenvalues of T/ are

1+ﬁ—%+\/(l+ﬂ—%)2—4ﬁ 1+ﬁ—%—\/(l+ﬁ—%)2—4ﬁ

Pj1= 3 > P2 >

2
for all 4, such that (1 +5 - j—’) - 48>0 and

oy A.\2 A A\2
1+B— 2 +iq/4 —(1+ﬁ—ﬂ—’) 1+B-2—iy[4 —(1+ﬁ—/1—’)
pj’lz 2 ’ pl!z 2

12
for all 4, such that (1 +8- TJ) — 4B < 0. Taking into account the assumptions of the theorem, we

derive
A 4\ A 4\
1+,8—t+ (1+ﬁ—i) —4p 1+ﬁ—j— (1+'8_Z) —4p
P11 = 3 v P12 = 3
and
A 1.\2 A 1:\2
14— 4iq4 _(1+ﬂ_#) 1+f- =i 4/3—(1+/3—A—f)
p],lz 2 ) p],2= 2

for all j =2, ..., n. Moreover, o1l =loj,l = \B.

Next, using Lemma 3 we get

k+1 k+1 k k
C T = o 11|Piz TP PPl — )
| j j”z— ko _ i (pk—l_ i—l)
2 P Pja =P PiPpPii =P
k k2 -1 k-1\|?
_ P2 TP . PiiPi2 (pj,z ~Pji )
Pi2 =P Pi2 =P
k-1 2 k=2 2
< [Z |p,,.,1|k—1—f|p,,2|f] +[|p,.,l||p,,2|z|p,,.,1|k—2—f|p,,2|f NEY)
=0 t=0
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Consider the expression above for j = 1. To bound the sums appearing on the right-hand side of the
previous inequality, we derive:

—
|
N

\/(2 2F\/7+(F2—1) ) (1_F\/7)
- Tl
2\/(F2—1)%(4—4F\/%+(F2—1)%)
.

=1-= 1_—’
3% V3

~

2
where the first inequality follows from the fact the function g(8) = (1 +5- A—l) — 4 is decreasing

2
J] 1 1 —
for B < (1 - ,/ﬁ) and in the last inequality we apply 1 — F /l_,lz 0, /l_,lz < o000 < - and % = T
Therefore,

>~

-1 k—1 t 00 t
|p |k—l—t|p |l‘:|p |k—12(|p1,2|) <Z(l_ VF2—1) _ V3%
1,1 1,2 1,1 \/ﬁ

1

I
[«
~
Il
(=]

and, similarly,

k=2 k=2 | t 0 5 t
e o, F?-1 V3x
k=2—t t >
oiallojal ol 10l <Z( ) <Z(1— = ] —

=0 =0 |p1,1| 1

Plugging these upper bounds in (37), we derive

I
IC;Ti, <« ———. (38)
VF? -1
Next, we consider the right-hand side of (37) for j = 2, ..., n. In this case, ijll = |pj’2| =
= £
=VB<1- R Therefore,
k=1

gl ool = k(VB) <"(1 ) i)k_l < k- 1)exp(_(k— 1>i)+1
2l 52 N N
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and, similarly,

k=2

- k F
0;1llo0 Do 2ol = (k= 1) (B) < (k= )exp (—(k— 1>—).
t=0 \/%
Since the maximal value of the function g(x) = xa* for x > 0 equals m, we have
F 1
(k - l)exp(—(k— 1)—) D . )
\Z eln(exp(—L= el
PImw
Putting all together, we obtain forall j=2, ..., n
2
( 7) Vi % Vsx
T, < — +1 - < —,
IE T < \/( oF ) 2R S eF (39)
where we use F < Vx.
Finally, with (38) and (39) in hand we derive
= Vo
k k
deVAHB(CZ, B) < deVHB(a’, B) =1ICT ”2 = j:rnl,a.'.).(,n”CjTjHZ < ﬁ

Theorem 1 from [Danilova, Kulakova, Polyak, 2018] implies that

Vx

d *, % > =
eVHB(CZ B) 2o

where o" and B8 are given in (4). Therefore,

2¢ V6

dev,n(a@, B) < devyp(a, f) < ——
AHB HB \/ﬁ

dev,g(a®, B°).

Missing proofs from Section 3

Proof of Lemma 1

Using recursion (13) for the virtual iterates defined in (12), we derive

2

— — 20
ey = I = 11 = . = 5 _“ﬁ<xk = %o VAR + 2 ﬁ)zllVf( Xl =
2= P = 2 = V) + (5 - T V) + — IVl (40)
T1-p 1-B aT-p7

From u-strong convexity and L-smoothness of f we have (e. g., see [Nesterov, 2018])

(= % VI) > f5) = £ + Sl = P,
IVFOeIP < 2L (£(x) = f(x,)).

2022, T. 14, Ne 2, C. 277-308

(41)




306 M. 1O. lanunosa, I'. C. ManuHOBCKUN

Together with (40) these relations give

2ar
~ 2 _ 2
[y — X ll7 < [P = X, 17 =

au alL
m”xk - x*||2 - m (1 - q) (f(xk) - f(x*)) +

+

2a —
1 —,8<xk - X Vf(xk»-
Next, we estimate the second and the fourth terms in the inequality above. Since ||a+b|* > %Ilall2 — 1B
for all a, b € R" (see also (31)), we can estimate the second term as

2 au
[l = X1 < =

—~ 2
= T

ay =12
1 _BHXk - xk” .
Using the Fenchel — Young inequality (30), we derive
2a 2aL 2, 5 (
= R V) < gl = RIP + VP <

(41) 2aL

] 18 X~ Xk B ( M) = T WX )
Putting all together, we obtain

v 2

aH ~ 2 20 (1 alL
21 _ﬁ))llxk_x*” - l—ﬁ(i_ 1_,3)(f(xk)—f(x*))+

@ _ (12,304
+ q(%w)llxk—xkll <
(12).(14) au ) _ 5 3Laf? )
< - I, = x, 17 = —— (f(x) = (%)) + ——=llm; 41l
( 20-p)) " ﬁ(f 0= )+ (1-p3 !
This completes the proof. O
Proof of Lemma 2

Using the update rule for m,, we get

(32) 1-
llm, 1> = 1Bm,_, + VI < ﬁ2(1+ B

(41)
T) m_IP + o2 (1 " l'%ﬁ) IV CIP <

41 2La
< Blim I + ﬂ(f(xk) £(x),
implying .
2
il < T=5 2871 (e = fx)
1=0

~(k+1
Summing up these inequalities for k = 0, 1 K with weights w, = (1 — 5ok ) (e

05 , we derive
3o & 6L 5 K k-1
aﬁ)S Zwkll my_|IP < afﬂ Z we (F(x) = £(x)) B <
=0 =0
612038 & &
S _C;’)’i D> wi(fe) = fae)) B (42)
k=0 =0

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE




MerTon TSXKeoro HiapuKa ¢ yepeTHeHHeM 307

Next, we upper bound w, in the following way: forall /=0, 1, ..., k
—(k—1) k-1 k-1
(34 (16) 1=
Wk =11- ap Wl < 1+ _a/J wj < 1+ _B Wl.
2(1-p) 1-p 2

Plugging this inequality into (42), we get

3Lap? 61208 < < =g\ 69
“ﬁ Z will 1P < C;ﬁZZW[(f(XD—f(x*))(HTﬁ) B <
k =0

=0 1
(34) 612038 <& &
< (1_ﬁ)ﬁzzwl(f(x,)—f(x*))(1_TB) <
k=0 [=0
61283 0 1-8 k 2 3ﬁ
i (;Wk(f(Xk)_f(x*)))[;(l_ : )] e 2 0 = £60)

Note that our choice of a (16) implies

12128 < a

(1-p° ~41-p)
Together with the previous inequality it gives (17). O
Proof of Theorem 4

From Lemma 1 we have

au ~ 2 _ = >, 3Lap’ 2
() = fx,) ( )IIX = x5 = Xy — x5+ ———= llmy I3
2(1 ﬁ) (f k f ) 2(1 _ﬁ) k 2 k+1 2 (1 _B)3 k—1112
Summing up these inequalities for k =0, 1, ..., K with weights w, = (1 - %;l—%)_(kH), we get
o K
wi lf(x) = f(x,) <
20 -p) § (s )
K 2 K
au — 2 — 2 3Lap , (7
<) (w1 - %, = x. I3 — wyllx —x*||)+— willmy 1l <
;( k( 2(1_ﬁ)) k 2 KN k+1 2 (1_B)3kZ=(; KNV e—=1112
K K
an _ _ a
< ) (Wl = xlB = Wil — x.lB) + A5 D o (Ao - ) <
k=0 k=0
K
< by — .03 + 4(1 25 2 () = 1x)).
k=0

K
Rearranging the terms and dividing both sides of the inequality by W, = 3% w,, we derive
k=0

K 41 = Plixy — x, I3
— > i (F) = fx) :
Kkz(; k k ) CVWK

Using Jensen’s inequality, we obtain

fG) < Z wef(xy),

KkO
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which implies (19). Next, when u > 0 we have Wy > wy | = (1 - Z(Lf—’_‘m)_K, which gives (20). Finally,
when p = 0 we have W, = K + 1 > K, implying (21).

Proof of Theorem 5
Theorem 4 for u = 0 implies that forr=1,2, ..., 7

2
@) ey < DRt (43)
aN
where E, = |Ix; = x,ll, for £ = 0, 1, ..., 7. In the remaining part of the proof, we derive via induction
that fort=1,2, ..., 7
uR}  ~ R}
@ - f) < 5 R< 3 (44)

where R, > |Ix, — x.ll, = ||3'50 — x,|l,. First of all, for 7 = 1 we have

(24),(43) uR3
< R

f(jc\l)_f(x*) = 4

From u-strong convexity of f we derive
pR

R2
- <fe) - flx) = Ef < 70-
Next, assume that (44) holds for all r =1, 2, ..., k < 7 and prove it for r = k + 1. From (43) we have

A1 - BR? @3) (1 - )R? e 1R?

f(’x\k+1) - f(x*) < G’N < 2k_2aN x 2k+2.

Again, applying u-strong convexity of f we derive

2 2
UR R
<G - f) = Ry <

2

which finishes the proof of (44). Therefore, after 7 = max {{log2 (’%ﬂ -1, 1} iterations R-AHB finds
such a point X, that

R? R?
pRo MRy
27+l 7 Hlog, (uR3/e)

_ 1= a-py
CZ—I‘I‘IIH{T, 4L\/§}’

J&) = fx) <

Finally, if

then the total number of AHB iterations equals

_ ({L LB UR;
= O((E T —ﬁ))log T)'
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