Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"