Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.
Ключевые слова: приповерхностная сетка, гидродинамика судна, численное моделирование обтекания корпуса, численное моделирование работы винта.
Usage of boundary layer grids in numerical simulations of viscous phenomena in of ship hydrodynamics problems
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 995-1008Numerical simulation of hull flow, marine propellers and other basic problems of ship hydrodynamics using Cartesian adaptive locally-refined grids is advantageous with respect to numerical setup and makes an express analysis very convenient. However, when more accurate viscous phenomena are needed, they condition some problems including a sharp increase of cell number due to high levels of main grid adaptation needed to resolve boundary layers and time step decrease in simulations with a free surface due to decrease of transit time in adapted cells. To avoid those disadvantages, additional boundary layer grids are suggested for resolution of boundary layers. The boundary layer grids are one-dimensional adaptations of main grid layers nearest to a wall, which are built along a normal direction. The boundary layer grids are additional (or chimerical), their volumes are not subtracted from main grid volumes. Governing equations of flow are integrated in both grids simultaneously, and the solutions are merged according to a special algorithm. In simulations of ship hull flow boundary layer grids are able to provide sufficient conditions for low-Reynolds turbulence models and significantly improve flow structure in continues boundary layers along smooth surfaces. When there are flow separations or other complex phenomena on a hull surface, it can be subdivided into regions, and the boundary layer grids should be applied to the regions with simple flow only. This still provides a drastic decrease of computational efforts. In simulations of marine propellers, the boundary layer grids are able to provide refuse of wall functions on blade surfaces, what leads to significantly more accurate hydrodynamic forces. Altering number and configuration of boundary grid layers, it is possible to vary a boundary layer resolution without change of a main grid. This makes the boundary layer grids a suitable tool to investigate scale effects in both problems considered.
-
Применение метода Dynamic Mode Decomposition для поиска неустойчивых мод в задаче о ламинарно-турбулентном переходе
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1069-1090Ламинарно-турбулентный переход является предметом активных исследований, связанных с повышением экономической эффективности авиатранспорта, так как в турбулентном пограничном слое увеличивается сопротивление, что ведет к росту расхода топлива. Одним из направлений таких исследований является поиск эффективных методов нахождения положения перехода в пространстве. Используя эту информацию при проектировании летательного аппарата, инженеры могут прогнозировать его технические характеристики и рентабельность уже на начальных этапах проекта. Традиционным для индустрии подходом к решению задачи поиска координат ламинарно-турбулентного перехода является $e^N$-метод. Однако, несмотря на повсеместное применение, он обладает рядом существенных недостатков, так как основан на предположении о параллельности моделируемого потока, что ограничивает сценарии его применения, а также требует проводить вычислительно затратные расчеты в широком диапазоне частот и волновых чисел. Альтернативой $e^N$-методу может служить применение метода Dynamic Mode Decomposition, который позволяет провести анализ возмущений потока, напрямую используя данные о нем. Это избавляет от необходимости в проведении затратных вычислений, а также расширяет область применения метода ввиду отсутствия в его построении предположений о параллельности потока.
В представленном исследовании предлагается подход к нахождению положения ламинарно-турбулентного перехода с применением метода Dynamic Mode Decomposition, заключающийся в разбиении региона пограничного слоя на множества подобластей, по каждому из которых независимо вычисляется точка перехода, после чего результаты усредняются. Подход валидируется на случаях дозвукового и сверхзвукового обтекания двумерной пластины с нулевым градиентом давления. Результаты демонстрируют принципиальную применимость и высокую точность описываемого метода в широком диапазоне условий. Проводится сравнение с $e^N$-методом, доказывающее преимущества предлагаемого подхода, выражающиеся в более быстром получении результата при сопоставимой с $e^N$-методом точности получаемого решения, что говорит о перспективности использования описываемого подхода в прикладных задачах.
Ключевые слова: dynamic mode decomposition, уравнения Навье – Стокса, ламинарно-турбулентный переход, линейная теория устойчивости, $e^N$-метод.
Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, $e^N$ method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.
The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the $e^N$ method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the $e^N$ method. This indicates the prospects for using the described approach in a real world applications.
-
О неустойчивости Толмина – Шлихтинга в численных решениях уравнений Навье – Стокса, полученных на основе мультиоператорной схемы 16-го порядка
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 953-967В работе приводятся результаты применения схемы очень высокой точности и разрешающей способности для получения численных решений уравнений Навье – Стокса сжимаемого газа, описывающих возникновение и развитие неустойчивости двумерного ламинарного пограничного слоя на плоской пластине. Особенностью проведенных исследований является отсутствие обычно используемых искусственных возбудителей неустойчивости при реализации прямого численного моделирования. Используемая мультиоператорная схема позволила наблюдать тонкие эффекты рождения неустойчивых мод и сложный характер их развития, вызванные предположительно ее малыми погрешностями аппроксимации. Приводится краткое описание конструкции схемы и ее основных свойств. Описываются постановка задачи и способ получения начальных данных, позволяющий достаточно быстро наблюдать установившийся нестационарный режим. Приводится методика, позволяющая обнаруживать колебания скорости с амплитудами, на много порядков меньшими ее средних значений. Представлена зависящая от времени картина возникновения пакетов волн Толмина – Шлихтинга с меняющейся интенсивностью в окрестности передней кромки пластины и их распространения вниз по потоку. Представленные амплитудные спектры с расширяющимися пиковыми значениями в нижних по течению областях указывают на возбуждение новых неустойчивых мод, отличных от возникающих в окрестности передней кромки. Анализ эволюции волн неустойчивости во времени и пространстве показал согласие с основными выводами линейной теории. Полученные численные решения, по-видимому, впервые описывают полный сценарий возможного развития неустойчивости Толмина – Шлихтинга, которая часто играет существенную роль на начальной стадии ламинарно-турбулентного перехода. Они открывают возможности полномасштабного численного моделирования этого крайне важного для практики процесса при аналогичном изучении пространственного пограничного слоя.
Ключевые слова: мультиоператорные схемы, уравнения Навье – Стокса сжимаемого газа, численное моделирование, неустойчивость Толмина – Шлихтинга, распространение пакетов волн неустойчивости.
On Tollmien – Schlichting instability in numerical solutions of the Navier – Stokes equations obtained with 16th-order multioperators-based scheme
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 953-967The paper presents the results of applying a scheme of very high accuracy and resolution to obtain numerical solutions of the Navier – Stokes equations of a compressible gas describing the occurrence and development of instability of a two-dimensional laminar boundary layer on a flat plate. The peculiarity of the conducted studies is the absence of commonly used artificial exciters of instability in the implementation of direct numerical modeling. The multioperator scheme used made it possible to observe the subtle effects of the birth of unstable modes and the complex nature of their development caused presumably by its small approximation errors. A brief description of the scheme design and its main properties is given. The formulation of the problem and the method of obtaining initial data are described, which makes it possible to observe the established non-stationary regime fairly quickly. A technique is given that allows detecting flow fluctuations with amplitudes many orders of magnitude smaller than its average values. A time-dependent picture of the appearance of packets of Tollmien – Schlichting waves with varying intensity in the vicinity of the leading edge of the plate and their downstream propagation is presented. The presented amplitude spectra with expanding peak values in the downstream regions indicate the excitation of new unstable modes other than those occurring in the vicinity of the leading edge. The analysis of the evolution of instability waves in time and space showed agreement with the main conclusions of the linear theory. The numerical solutions obtained seem to describe for the first time the complete scenario of the possible development of Tollmien – Schlichting instability, which often plays an essential role at the initial stage of the laminar-turbulent transition. They open up the possibilities of full-scale numerical modeling of this process, which is extremely important for practice, with a similar study of the spatial boundary layer.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"