Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'thermodynamic averages':
Найдено статей: 2
  1. Русяк И.Г., Тененев В.А.
    Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147

    В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.

    Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.

    Rusyak I.G., Tenenev V.A.
    Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147

    The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.

    A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.

  2. Фиалко Н.С., Ольшевец М.М., Лахно В.Д.
    Численное исследование модели Холстейна в разных термостатах
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502

    На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.

    Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.

    В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.

    Fialko N.S., Olshevets M.M., Lakhno V.D.
    Numerical study of the Holstein model in different thermostats
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 489-502

    Based on the Holstein Hamiltonian, the dynamics of the charge introduced into the molecular chain of sites was modeled at different temperatures. In the calculation, the temperature of the chain is set by the initial data ¡ª random Gaussian distributions of velocities and site displacements. Various options for the initial charge density distribution are considered. Long-term calculations show that the system moves to fluctuations near a new equilibrium state. For the same initial velocities and displacements, the average kinetic energy, and, accordingly, the temperature of the T chain, varies depending on the initial distribution of the charge density: it decreases when a polaron is introduced into the chain, or increases if at the initial moment the electronic part of the energy is maximum. A comparison is made with the results obtained previously in the model with a Langevin thermostat. In both cases, the existence of a polaron is determined by the thermal energy of the entire chain.

    According to the simulation results, the transition from the polaron mode to the delocalized state occurs in the same range of thermal energy values of a chain of $N$ sites ~ $NT$ for both thermostat options, with an additional adjustment: for the Hamiltonian system the temperature does not correspond to the initially set one, but is determined after long-term calculations from the average kinetic energy of the chain.

    In the polaron region, the use of different methods for simulating temperature leads to a number of significant differences in the dynamics of the system. In the region of the delocalized state of charge, for high temperatures, the results averaged over a set of trajectories in a system with a random force and the results averaged over time for a Hamiltonian system are close, which does not contradict the ergodic hypothesis. From a practical point of view, for large temperatures T ≈ 300 K, when simulating charge transfer in homogeneous chains, any of these options for setting the thermostat can be used.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.