Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.
Ключевые слова: численные методы, дифракция, фотонные кристаллы, спектральное разложение, теорема сложения.
Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.
Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.
Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.
Ключевые слова: рейтинг одобрения, политическое лидерство, информационное воздействие, стадное поведение, марковскийпр оцесс.
Stochastic model of voter dynamics in online media
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.
The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.
Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"