Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность.
Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.
-
Анализ прогностических свойств тремора земной поверхности с помощью разложения Хуанга
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 939-958Предлагается метод анализа тремора земной поверхности, измеряемого средствами космической геодезии с целью выделения прогностических эффектов активизации сейсмичности. Метод иллюстрируется на примере совместного анализа совокупности синхронных временных рядов ежесуточных вертикальных смещений земной поверхности на Японских островах для интервала времени 2009–2023 гг. Анализ основан на разбиении исходных данных (1047 временных рядов) на блоки (кластеры станций) и последовательном применении метода главных компонент. Разбиение сети станций на кластеры производится методом k-средних из критерия максимума псевдо-статистики. Для Японии оптимальное число кластеров было выбрано равным 15. К временным рядам главных компонент от блоков станций применяется метод разложения Хуанга на последовательность независимых эмпирических мод колебаний (Empirical Mode Decomposition, EMD). Для обеспечения устойчивости оценок волновых форм EMD-разложения производилось усреднение 1000 независимых аддитивных реализаций белого шума ограниченной амплитуды. С помощью разложения Холецкого ковариационной матрицы волновых форм первых трех EMD-компонент в скользящем временном окне определены индикаторы аномального поведения тремора. Путем вычисления корреляционной функции между средними индикаторами аномального поведения и выде- лившейся сейсмической энергии в окрестности Японских островов установлено, что всплески меры ано- мального поведения тремора предшествуют выбросам сейсмической энергии. Целью статьи является про- яснение распространенных гипотез о том, что движения земной коры, регистрируемые средствами космической геодезии, могут содержать прогностическую информацию. То, что смещения, регистрируемые геодезическими методами, реагируют на последствия землетрясений, широко известно и многократно демонстрировалось. Но выделение геодезических эффектов, предвещающих сейсмические события, является значительно более сложной задачей. В нашей статье мы предлагаем один из методов обнаружения прогностических эффектов в данных космической геодезии.
Ключевые слова: тремор земной поверхности, кластерный анализ, метод главных компонент, разложение Хуанга, мера аномального поведения временных рядов, корреляционная функция.
Analysis of predictive properties of ground tremor using Huang decomposition
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.
-
Поиск точек разладки в биометрических данных: ретроспективные непараметрические методы сегментации на основе динамического программирования и скользящих окон
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1295-1321Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.
Ключевые слова: космическая медицина, локомоторное тестирование, временные ряды, точка разладки, сегментация, непараметрический, ретроспективный, динамическое программирование, скользящее окно.
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"