Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Диссипативная стохастическая динамическая модель развития языковых знаков
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.
Ключевые слова: языковой знак, эволюция, ассоциативно-семантический потенциал, значение знака, полисемия, частотно-ранговое распределение, диссипативная стохастическая динамическая модель.
Dissipative Stochastic Dynamic Model of Language Signs Evolution
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.
-
Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.
Ключевые слова: экспертная система, извлечение знаний, лингвистическая переменная, степень принадлежности, нечеткое правило.
Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"