Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'scale-free network':
Найдено статей: 5
  1. Евин И.А.
    Введение в теорию сложных сетей
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 121-141

    В последние годы сложилось новое направление изучения сложных систем, рассматривающее их как сетевые структуры. Узлы в таких сетях представляют собой элементы этих сложных систем, а связи между узлами – взаимодействия между элементами. Эти исследования имеют дело с реальными системами, такими как биологические (метаболические сети клеток, функциональные сети мозга, экологические системы), технические (Интернет, WWW, сети компаний сотовой связи, сети электростанций), социальные (сети научного сотрудничества, сети актеров кино, сети знакомств). Оказалось, что эти сети имеют более сложную архитектуру, чем классические случайные сети. В предлагаемом обзоре даются основные понятия теории сложных сетей, а также кратко описаны основные направления изучения реальных сетевых структур.

    Yevin I.A.
    Introduction to the theory of complex networks
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 121-141

    There was a new direction of studying of the complex systems last years, considering them as networks. Nodes in such networks represent elements of these complex systems, and links between nodes – interactions between elements. These researches deal with real systems, such as biological (metabolic networks of cells, functional networks of a brain, ecological systems), technical (the Internet, WWW, networks of the companies of cellular communication, power grids), social (networks of scientific cooperation, a network of movie actors, a network of acquaintances). It has appeared that these networks have more complex architecture, than classical random networks. In the offered review the basic concepts theory of complex networks are given, and the basic directions of studying of real networks structures are also briefly described.

    Просмотров за год: 53. Цитирований: 107 (РИНЦ).
  2. Евин И.А., Кобляков А.А., Савриков Д.В., Шувалов Н.Д.
    Когнитивные сети
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 231-239

    Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.

    Yevin I.A., Koblyakov A.A., Savricov D.V., Shuvalov N.D.
    Cognitive Networks
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 231-239

    Traditional classification of real complex networks on biological, technological and social is incomplete, as there is a huge variety of artworks, which structure also can be presented in the form of networks. In this paper the review of researches of the complex networks, modeling some literary, musical and painting works is given. Corresponding networks are offered for naming cognitive networks. The possible directions of studying of such networks are discussed.

    Просмотров за год: 6. Цитирований: 16 (РИНЦ).
  3. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Yevin I.A., Komarov V.V., Popova M.S., Marchenko D.K., Samsonova A.J.
    Cities road networks
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 775-786

    Road network infrastructure is the basis of any urban area. This article compares the structural characteristics (meshedness coefficient, clustering coefficient) road networks of Moscow center (Old Moscow), formed as a result of self-organization and roads near Leninsky Prospekt (postwar Moscow), which was result of cetralized planning. Data for the construction of road networks in the form of graphs taken from the Internet resource OpenStreetMap, allowing to accurately identify the coordinates of the intersections. According to the characteristics of the calculated Moscow road networks areas the cities with road network which have a similar structure to the two Moscow areas was found in foreign publications. Using the dual representation of road networks of centers of Moscow and St. Petersburg, studied the information and cognitive features of navigation in these tourist areas of the two capitals. In the construction of the dual graph of the studied areas were not taken into account the different types of roads (unidirectional or bi-directional traffic, etc), that is built dual graphs are undirected. Since the road network in the dual representation are described by a power law distribution of vertices on the number of edges (scale-free networks), exponents of these distributions were calculated. It is shown that the information complexity of the dual graph of the center of Moscow exceeds the cognitive threshold 8.1 bits, and the same feature for the center of St. Petersburg below this threshold, because the center of St. Petersburg road network was created on the basis of planning and therefore more easy to navigate. In conclusion, using the methods of statistical mechanics (the method of calculating the partition functions) for the road network of some Russian cities the Gibbs entropy were calculated. It was found that with the road network size increasing their entropy decreases. We discuss the problem of studying the evolution of urban infrastructure networks of different nature (public transport, supply , communication networks, etc.), which allow us to more deeply explore and understand the fundamental laws of urbanization.

    Просмотров за год: 3.
  4. Петров А.П., Подлипская О.Г., Подлипский О.К.
    Моделирование динамики политических позиций: плотность сети и шансы меньшинства
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 785-796

    Некоторые информационные противоборства завершаются тем, что практически все общество принимает одну точку зрения, другие приводят к тому, что партия большинства получает лишь небольшой перевес над партией меньшинства. Возникает вопрос о том, какие сетевые характеристики общества способствуют тому, чтобы меньшинство могло сохранять некоторую значимую численность. С учетом того, что некоторые общества являются более связными, чем другие, в смысле того, что они имеют более высокую плотность социальных связей, данный вопрос конкретизируется следующим образом: какой эффект плотности социальных связей оказывается на шансы меньшинства сохранить не слишком малую численность? Способствует ли более высокая плотность более полной победе большинства или, наоборот, шансам меньшинства? Для изучения этого вопроса рассматривается информационное противоборство двух партий, называемых левой и правой, в населении, представленном в виде сети, узлами которой являются индивиды, а связи соответствуют их знакомству и описывают взаимное влияние. В каждый из дискретных моментов времени каждый индивид принимает решение о поддержке той или иной партии, основываясь на своей установке, т.е. предрасположенности к левой либо правой партии, и учитывая влияние своих соседей по сети. Влияние состоит в том, что каждый сосед с определенной вероятностью посылает данному индивиду сигнал в пользу той партии, которую сам в данный момент поддерживает. Если сосед меняет свою партийность, то он начинает агитировать данного индивида за свою «новую» партию. Такие процессы создают динамику, т.е. протяженное во времени изменение партийности индивидов. Продолжительность противоборства является экзогенно заданной, последний момент может быть условно ассоциирован с днем выборов. Изложенная модель численно реализована на безмасштабной сети. Проведены численные эксперименты для различных значений плотности сети. Ввиду наличия стохастических элементов в модели, для каждого значения плотности проведено 200 прогонов, для каждого из которых определена конечная численность сторонников каждой изпа ртий. Получено, что при увеличении плотности увеличиваются шансы того, что победившая точка зрения охватит практически все население. И наоборот, низкая плотность сети способствует шансам меньшинства сохранить значимую численность.

    Petrov A.P., Podlipskaia O.G., Podlipskii O.K.
    Modeling the dynamics of political positions: network density and the chances of minority
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 785-796

    In some cases, information warfare results in almost whole population accepting one of two contesting points of view and rejecting the other. In other cases, however, the “majority party” gets only a small advantage over the “minority party”. The relevant question is which network characteristics of a population contribute to the minority being able to maintain some significant numbers. Given that some societies are more connected than others, in the sense that they have a higher density of social ties, this question is specified as follows: how does the density of social ties affect the chances of a minority to maintain a significant number? Does a higher density contribute to a landslide victory of majority, or to resistance of minority? To address this issue, we consider information warfare between two parties, called the Left and the Right, in the population, which is represented as a network, the nodes of which are individuals, and the connections correspond to their acquaintance and describe mutual influence. At each of the discrete points in time, each individual decides which party to support based on their attitude, i. e. predisposition to the Left or Right party and taking into account the influence of his network ties. The influence means here that each tie sends a cue with a certain probability to the individual in question in favor of the party that themselves currently support. If the tie switches their party affiliation, they begin to agitate the individual in question for their “new” party. Such processes create dynamics, i. e. the process of changing the partisanship of individuals. The duration of the warfare is exogenously set, with the final time point roughly associated with the election day. The described model is numerically implemented on a scale-free network. Numerical experiments have been carried out for various values of network density. Because of the presence of stochastic elements in the model, 200 runs were conducted for each density value, for each of which the final number of supporters of each of the parties was calculated. It is found that with higher density, the chances increase that the winner will cover almost the entire population. Conversely, low network density contributes to the chances of a minority to maintain significant numbers.

  5. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

    Shinyaeva T.S.
    Activity dynamics in virtual networks: an epidemic model vs an excitable medium model
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1485-1499

    Epidemic models are widely used to mimic social activity, such as spreading of rumors or panic. Simultaneously, models of excitable media are traditionally used to simulate the propagation of activity. Spreading of activity in the virtual community was simulated within two models: the SIRS epidemic model and the Wiener – Rosenblut model of the excitable media. We used network versions of these models. The network was assumed to be heterogeneous, namely, each element of the network has an individual set of characteristics, which corresponds to different psychological types of community members. The structure of a virtual network relies on an appropriate scale-free network. Modeling was carried out on scale-free networks with various values of the average degree of vertices. Additionally, a special case was considered, namely, a complete graph corresponding to a close professional group, when each member of the group interacts with each. Participants in a virtual community can be in one of three states: 1) potential readiness to accept certain information; 2) active interest to this information; 3) complete indifference to this information. These states correspond to the conditions that are usually used in epidemic models: 1) susceptible to infection, 2) infected, 3) refractory (immune or death due to disease). A comparison of the two models showed their similarity both at the level of main assumptions and at the level of possible modes. Distribution of activity over the network is similar to the spread of infectious diseases. It is shown that activity in virtual networks may experience fluctuations or decay.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.