Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'proliferation and migration dichotomy':
Найдено статей: 1
  1. Колобов А.В., Анашкина А.А., Губернов В.В., Полежаев А.А.
    Математическая модель роста опухоли с учетом дихотомии миграции и пролиферации
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 415-422

    Исследована математическая модель роста инвазивной опухоли, которая учитывает тот факт, что клетка не может одновременно активно мигрировать в ткани и пролиферировать. Переход из одного состояния в другое пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации клетки делятся, при низкой — мигрируют. Была исследована зависимость скорости роста опухоли от параметров модели. Показано, что скорость пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации она практически не меняется, а ниже порогового значения рост опухоли существенно замедляется.

    Kolobov A.V., Anashkina A.A., Gubernov V.V., Polezhaev A.A.
    Mathematical model of tumor growth with migration and proliferation dichotomy
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 415-422

    Mathematical model of infiltrative tumour growth taking into account transitions between two possible states of malignant cell is investigated. These transitions are considered to depend on oxygen level in a threshold manner: high oxygen concentration allows cell proliferation, while concentration below some critical value induces cell migration. Dependence of infiltrative tumour spreading rate on model parameters has been studied. It is demonstrated that if the level of tissue oxygenation is high, tumour spreading rate remains almost constant; otherwise the spreading rate decreases dramatically with oxygen depletion.

    Просмотров за год: 3. Цитирований: 13 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.