Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.
Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.
Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.
Ключевые слова: рейтинг одобрения, политическое лидерство, информационное воздействие, стадное поведение, марковскийпр оцесс.
Stochastic model of voter dynamics in online media
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.
The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.
Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"