Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'permeability of porous layer':
Найдено статей: 1
  1. Бруяка В.А.
    Моделирование течения тонкого слоя жидкости с учетом разрывов и шероховатости границ
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 795-806

    Рассматривается задача о течении жидкости в тонком слое между шероховатыми поверхностями с учетом их сближения и разрывов слоя в местах гребневого контакта микронеровностей. Пространство между поверхностями рассматривается как пористая среда с переменной проницаемостью, зависящей от микропрофиля шероховатости и степени сближения поверхностей. Для получения зависимости проницаемости от сближения поверхностей выполняется расчет течения жидкости на малом участке слоя (100 мкм), для которого микропрофиль шероховатости моделируется с помощью фрактальной функции Вейерштрасса – Мандельброта. Расчетной является трехмерная область, заполняющая пустоты между выступами и впадинами микропрофилей поверхностей, расположенных на некотором расстоянии друг от друга. Сближение поверхностей приводит к тому, что в местах пересечения гребней микронеровностей появляются разрывы расчетной области. При заданном сближении и граничных условиях рассчитывается расход жидкости и перепад давления, на основании которых вычисляется проницаемость эквивалентной пористой среды. Результаты расчетов проницаемости, полученные для различных сближений шероховатых поверхностей, аппроксимированы степенной функцией. Это позволяет рассчитывать характеристики течения в тонком слое переменной толщины, имеющем характерную длину на несколько порядков больше масштабов шероховатости. В качестве примера, иллюстрирующего практическое применение данной методики, получено решение задачи о течении жидкости в зазоре между заготовкой и матрицей при гидропрессовании в трехмерной постановке при условии линейного уменьшения проницаемости эквивалентного пористого слоя.

    In this paper a fluid flow between two close located rough surfaces depending on their location and discontinuity in contact areas is investigated. The area between surfaces is considered as the porous layer with the variable permeability, depending on roughness and closure of surfaces. For obtaining closure-permeability function, the flow on the small region of surfaces (100 $\mu$m) is modeled, for which the surfaces roughness profile created by fractal function of Weierstrass – Mandelbrot. The 3D-domain for this calculation fill out the area between valleys and peaks of two surfaces, located at some distance from each other. If the surfaces get closer, a contacts between roughness peaks will appears and it leads to the local discontinuities in the domain. For the assumed surfaces closure and boundary conditions the mass flow and pressure drop is calculated and based on that, permeability of the equivalent porous layer is evaluated.The calculation results of permeability obtained for set of surfaces closure were approximated by a polynom. This allows us to calculate the actual flow parameters in a thin layer of variable thickness, the length of which is much larger than the scale of the surface roughness. As an example, showing the application of this technique, flow in the gap between the billet and conical die in 3D-formulation is modeled. In this problem the permeability of an equivalent porous layer calculated for the condition of a linear decreased gap.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.