Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'permeability':
Найдено статей: 13
  1. Заика Ю.В., Родченкова Н.И., Сидоров Н.И.
    Моделирование водородопроницаемости сплавов для мембранного газоразделения
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 121-135

    Производство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости в соответствии со спецификой эксперимента, численный метод решения краевой задачи и результаты параметрической идентификации модели для сплава V85Ni15.

    Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
  2. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

    Umavovskiy A.V.
    Data-driven simulation of a two-phase flow in heterogenous porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792

    The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.

  3. Рухленко А.С., Злобина К.Е., Гурия Г.Т.
    Гидродинамическая активация свертывания крови в стенозированных сосудах. Теоретический анализ
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 155-183

    В настоящей работе исследованы гидродинамические механизмы активации плазменного звена системы свертывания крови при числах Рейнольдса в интервале от 10 до 500. Условия активации изучены в рамках модели, предполагающей, что проницаемость сосудистых стенок по отношению к первичным активаторам системы свертывания крови возрастает с увеличением касательного напряжения. Обнаружено несколько характерных сценариев развития процессов тромбообразования. Изучено влияние изменения топологии течения на активацию внутрисосудистого свертывания крови. Установлено, что пороговая активация плазменного звена системы гемостаза в стенозированных сосудах может иметь место не только при ослаблении, но и при интенсификации кровотока. В заключительной части работы обсуждены возможные медицинские приложения полученных результатов.

    Rukhlenko A.S., Zlobina K.E., Guria G.T.
    Hydrodynamical activation of blood coagulation in stenosed vessels. Theoretical analysis
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 155-183

    The mechanisms of hydrodynamical activation of blood coagulation system are investigated in stenosed vessels for a wide range of Reynolds number values (from 10 up to 500). It is assumed that the vessel wall permeability for procoagulant factors rapidly increases when wall shear stress exceeds specific threshold value. A number of patterns of blood coagulation processes development are described. The influence of blood flow topology changes on activation of blood coagulation is explored. It is established that not only blood flow decrease, but also its increase may promote activation of blood coagulation. It was found that dependence of thrombogenic danger of stenosis on vessel lumen blockage ratio is non-monotonic. The relevance of obtained theoretical results for clinical practice is discussed.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.