Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.
Ключевые слова: обратные задачи, выпуклая оптимизация, оптимизация в гильбертовом пространстве, методы первого порядка, покомпонентный спуск, неточный оракул.
On the modification of the method of component descent for solving some inverse problems of mathematical physics
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.
-
Математическое моделирование и оптимальное управление процессом осаждения гальванического покрытия в многоанодной ванне с учетом изменения концентрации компонентов электролита
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 193-203Данная работа рассматривает задачу оптимального управления гальваническим процессом в многоанодной ванне. Построена нестационарная математическая модель гальванического процесса, которая учитывает изменения концентрации компонентов электролита. Продемонстрировано обоснование выбора вида управляющих экстремалей на примере гальванического процесса хромирования в стандартном электролите.
Ключевые слова: математическая модель, уравнение параболического типа, оптимальное управление, модифицированный метод Ритца, гальванический процесс, многоанодная ванна, изменение концентрации компонентов электролита.
Mathematical modeling and optimal control deposition process galvanic coverings in a multianode bath taking into account change concentrations of electrolyte components
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 193-203Просмотров за год: 4. Цитирований: 4 (РИНЦ).This work considers the problem of optimal control galvanic process in multianode bath. The nonstationary mathematical model of galvanic process, which considers change concentrations of electrolyte components, is developed. Demonstrated rationale for the choice of the form to extremal control on example chrome galvanic process in the standard electrolyte.
-
О решении уравнения Экснера для дна, имеющего сложную морфологию
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.
В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.
Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.
Ключевые слова: математическое моделирование, численная неустойчивость, уравнение Экснера, речное дно, транспорт наносов, аналитическая модель.
Solving of the Exner equation for morphologically complex bed
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 449-461Просмотров за год: 10.The Exner equation in conjunction phenomenological sediment transport models is widely used for mathematical modeling non-cohesive river bed. This approach allows to obtain an accurate solution without any difficulty if one models evolution of simple shape bed. However if one models evolution of complex shape bed with unstable soil the numerical instability occurs in some cases. It is difficult to detach this numerical instability from the natural physical instability of bed.
This paper analyses the causes of numerical instability occurring while modeling evolution of complex shape bed by using the Exner equation and phenomenological sediment rate models. The paper shows that two kinds of indeterminateness may occur while solving numerically the Exner equation closed by phenomenological model of sediment transport. The first indeterminateness occurs in the bed area where sediment transport is transit and bed is not changed. The second indeterminateness occurs at the extreme point of bed profile when the sediment rate varies and the bed remains the same. Authors performed the closure of the Exner equation by the analytical sediment transport model, which allowed to transform the Exner equation to parabolic type equation. Analysis of the obtained equation showed that it’s numerical solving does not lead to occurring of the indeterminateness mentioned above. Parabolic form of the transformed Exner equation allows to apply the effective and stable implicit central difference scheme for this equation solving.
The model problem of bed evolution in presence of periodic distribution of the bed shear stress is carried out. The authors used the explicit central difference scheme with and without filtration method application and implicit central difference scheme for numerical solution of the problem. It is shown that the explicit central difference scheme is unstable in the area of the bed profile extremum. Using the filtration method resulted to increased dissipation of the solution. The solution obtained by using the implicit central difference scheme corresponds to the distribution law of bed shear stress and is stable throughout the calculation area.
-
Моделирование пространственно-временной миграции близкородственных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения.
Modeling of spatialtemporal migration for closely related species
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.
Keywords: dynamics of populations, nonlinear parabolic equations.Просмотров за год: 6. Цитирований: 9 (РИНЦ). -
Численный анализ естественной конвекции кориума в условиях внутрикорпусной локализации с учетом переменного тепловыделения
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 807-822В представленном исследовании проводится численное моделирование охлаждения кориума, расплава керамического топлива ядерного реактора и оксидов конструкционных материалов, в горизонтальной полуцилиндрической полости, стенки которой поддерживаются при постоянной температуре, в условиях естественной конвекции.
Охлаждение кориума — это процесс характерный для тяжелой аварии на ядерном реакторе, которая может быть локализована путем удержания кориума внутри корпуса реактора, испытывающего внешнее охлаждение. Такой подход обеспечивает не только сравнительно простой способ удержания радиоактивности в пределах первого контура, но и возможность реализации на действующих блоках. Это выступает альтернативой ловушке расплава, еще одному методу локализации. Точный анализ и моделирование процесса охлаждения в таких условиях оказываются перспективной областью исследований в настоящее время.
В начальный момент времени температура кориума принимается равной температуре стенки. Кориум, несмотря на останов реактора, обладает остаточным тепловыделением, которое уменьшается со временем согласно формуле Вэя–Вигнера. Процесс естественной конвекции внутри полости описывается системой уравнений в приближении Буссинеска, которая включает в себя уравнение движения, уравнение неразрывности и уравнение энергии. Конвективные потоки считаются ламинарными и двумерными, теплофизические свойства жидкости считаются независимыми от температуры.
Краевая задача математической физики формулируется в безразмерных переменных «функция тока – завихренность». Полученные дифференциальные уравнения решаются численно при помощи метода конечных разностей c использованием локально-одномерной схемы Самарского применительно к уравнениям параболического типа.
В результате исследований получены временные зависимости среднего числа Нуссельта на верхней и нижней стенках полости в широком диапазоне изменения числа Рэлея от 103 до 106. Указанные зависимости также были проанализированы при различных значениях безразмерного времени работы реактора до аварии. Исследования проведены как на основе распределений изолиний функции тока и температуры, так и с использованием временных профилей интенсивности конвективного течения и теплообмена.
Ключевые слова: естественная конвекция, кориум, ядерный реактор, тяжелая авария, численное моделирование, метод конечных разностей.
Numerical simulation of corium cooling driven by natural convection in case of in-vessel retention and time-dependent heat generation
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 807-822Represented study considers numerical simulation of corium cooling driven by natural convection within a horizontal hemicylindrical cavity, boundaries of which are assumed isothermal. Corium is a melt of ceramic fuel of a nuclear reactor and oxides of construction materials.
Corium cooling is a process occurring during severe accident associated with core melt. According to invessel retention conception, the accident may be restrained and localized, if the corium is contained within the vessel, only if it is cooled externally. This conception has a clear advantage over the melt trap, it can be implemented at already operating nuclear power plants. Thereby proper numerical analysis of the corium cooling has become such a relevant area of studies.
In the research, we assume the corium is contained within a horizontal semitube. The corium initially has temperature of the walls. In spite of reactor shutdown, the corium still generates heat owing to radioactive decays, and the amount of heat released decreases with time accordingly to Way–Wigner formula. The system of equations in Boussinesq approximation including momentum equation, continuity equation and energy equation, describes the natural convection within the cavity. Convective flows are taken to be laminar and two-dimensional.
The boundary-value problem of mathematical physics is formulated using the non-dimensional nonprimitive variables «stream function – vorticity». The obtained differential equations are solved numerically using the finite difference method and locally one-dimensional Samarskii scheme for the equations of parabolic type.
As a result of the present research, we have obtained the time behavior of mean Nusselt number at top and bottom walls for Rayleigh number ranged from 103 to 106. These mentioned dependences have been analyzed for various dimensionless operation periods before the accident. Investigations have been performed using streamlines and isotherms as well as time dependences for convective flow and heat transfer rates.
-
Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.
В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.
Ключевые слова: компьютерное моделирование, численные методы, гиперболические системы, сеточно-характеристический численный метод, операторное расщепление, порядок сходимости.
Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.
In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"