Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение.
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
Моделирование динамики кальция в органических горизонтах почвы
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Просмотров за год: 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"