Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.
Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.
В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.
Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.
Ключевые слова: олигополистические рынки, операционное исчисление, обобщенные матричные уравнения Риккати, электронные таблицы, факторизация.
Studying indicators of development of oligopolistic markets on the basis of operational calculus
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 949-963The traditional approach to computing optimal game strategies of firms on oligopolistic markets and of indicators of such markets consists in studying linear dynamical games with quadratic criteria and solving generalized matrix Riccati equations.
The other approach proposed by the author is based on methods of operational calculus (in particular, Z-transform). This approach makes it possible to achieve economic meaningful decisions under wider field of parameter values. It characterizes by simplicity of computations and by necessary for economic analysis visibility. One of its advantages is that in many cases important for economic practice, it, in contrast to the traditional approach, provides the ability to make calculations using widespread spreadsheets, which allows to study the prospects for the development of oligopolistic markets to a wide range of professionals and consumers.
The article deals with the practical aspects of determining the optimal Nash–Cournot strategies of participants in oligopolistic markets on the basis of operational calculus, in particular the technique of computing the optimal Nash–Cournot strategies in Excel. As an illustration of the opportinities of the proposed methods of calculation, examples close to the practical problems of forecasting indicators of the markets of high-tech products are studied.
The results of calculations obtained by the author for numerous examples and real economic systems, both using the obtained relations on the basis of spreadsheets and using extended Riccati equations, are very close. In most of the considered practical problems, the deviation of the indicators calculated in accordance with the two approaches, as a rule, does not exceed 1.5–2%. The highest value of relative deviations (up to 3–5%) is observed at the beginning of the forecasting period. In typical cases, the period of relatively noticeable deviations is 3–5 moments of time. After the transition period, there is almost complete agreement of the values of the required indicators using both approaches.
-
Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.
В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.
На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.
В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.
Ключевые слова: кибератаки, рыночная структура, нерыночные противодействия, олигополистические рынки, динамические игры.
Study of the dynamics of the structure of oligopolistic markets with non-market opposition parties
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 219-233The article examines the impact of non-market actions of participants in oligopolistic markets on the market structure. The following actions of one of the market participants aimed at increasing its market share are analyzed: 1) price manipulation; 2) blocking investments of stronger oligopolists; 3) destruction of produced products and capacities of competitors. Linear dynamic games with a quadratic criterion are used to model the strategies of oligopolists. The expediency of their use is due to the possibility of both an adequate description of the evolution of markets and the implementation of two mutually complementary approaches to determining the strategies of oligopolists: 1) based on the representation of models in the state space and the solution of generalized Riccati equations; 2) based on the application of operational calculus methods (in the frequency domain) which owns the visibility necessary for economic analysis.
The article shows the equivalence of approaches to solving the problem with maximin criteria of oligopolists in the state space and in the frequency domain. The results of calculations are considered in relation to a duopoly, with indicators close to one of the duopolies in the microelectronic industry of the world. The second duopolist is less effective from the standpoint of costs, though more mobile. Its goal is to increase its market share by implementing the non-market methods listed above.
Calculations carried out with help of the game model, made it possible to construct dependencies that characterize the relationship between the relative increase in production volumes over a 25-year period of weak and strong duopolists under price manipulation. Constructed dependencies show that an increase in the price for the accepted linear demand function leads to a very small increase in the production of a strong duopolist, but, simultaneously, to a significant increase in this indicator for a weak one.
Calculations carried out with use of the other variants of the model, show that blocking investments, as well as destroying the products of a strong duopolist, leads to more significant increase in the production of marketable products for a weak duopolist than to a decrease in this indicator for a strong one.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"