Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation':
Найдено статей: 2
  1. Левченко Е.А., Трифонов А.Ю., Шаповалов А.В.
    Квазиклассическое приближение для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 205-219

    Для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова в классе траекторно-сосредоточенных функций построены квазиклассические асимптотики с точностью $O(D^{N/2})$, $N\geqslant3$. С помощью операторов симметрии получен счетный набор асимптотических решений исходного уравнения с точностью $O(D^{3/2})$. В явном виде построены асимптотические решения двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова.

    Levchenko E.A., Trifonov A.Y., Shapovalov A.V.
    Semiclassical approximation for the nonlocal multidimensional FisherKolmogorovPetrovskiiPiskunov equation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219

    Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional FisherKolmogorovPetrovskiiPiskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional FisherKolmogorovPetrovskiiPiskunov equation are found in explicit
    form.

    Просмотров за год: 4.
  2. Левченко Е.А., Трифонов А.Ю., Шаповалов А.В.
    Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова на больших временах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 543-558

    Для одномерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова построены асимптотические решения, позволяющие описывать квазистационарные структуры. Построены асимптотические решения динамической системы Эйнштейна–Эренфеста для двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова. Эти решения описывают свойства двумерных структур, локализованных на одномерных многообразиях.

    Levchenko E.A., Trifonov A.Y., Shapovalov A.V.
    Large-time asymptotic solutions of the nonlocal FisherKolmogorovPetrovskiiPiskunov equation
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558

    Asymptotic solutions are constructed for the 1D nonlocal FisherKolmogorovPetrovskiiPiskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein–Ehrenfest system for the 2D FisherKolmogorovPetrovskiiPiskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.