Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Теоремы о предельной нагрузке для жесткопластических сплошных сред с внутренними степенями свободы и их приложение к континуальным сетчатым оболочкам
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 423-432Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.
Ключевые слова: жесткопластическая среда, репер Картана, определяющие уравнения, предельная нагрузка, память формы, оболочки вращения.
Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432Цитирований: 2 (РИНЦ).This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.
-
Динамическая теория информации как базис естественно-конструктивистского подхода к моделированию мышления
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 433-447Рассматриваются основные положения и выводы динамической теории информации (ДТИ). Показано, что ДТИ дает возможность выявить два существенно важных типа информации: объективную (безусловную) и субъективную (условную). Выделяется два способа получения информации: рецепция (восприятие уже существующей информации) и генерация информации (производство новой). Показано, что процессы генерации и рецепции информации должны происходить в двух разных подсистемах одной когнитивной системы. Обсуждаются основные положения естественно-конструктивистского подхода к моделированию мышления. Показано, что любой нейроморфный подход сталкивается с проблемой «провала в описании «Мозга» и «Разума»», т. е. провала между объективно измеримой информации об ансамбле нейронов («Мозг») и субъективной информацией о сознании человека («Разум»). Обсуждается естественно-конструктивистская когнитивная архитектура, разработанная в рамках данного подхода. Она представляет собой сложную блочно-иерархическую комбинацию, собранную из разных нейропро-цессоров. Основная конструктивная особенность этой архитектуры состоит в том, что вся система разделена на две подсистемы (по аналогии с полушариями головного мозга). Одна из подсистем отвечает за восприятие новой информации, обучение и творчество, т. е. за генерацию информации. Другая подсистема отвечает за обработку уже существующей информации, т. е. рецепцию информации. Показано, что низший (нулевой) уровень иерархии представлен процессорами, которые должны записывать образы реальных объектов (распределенная память) как отклик на сенсорные сигналы, что представляет собой объективную информацию (и относится к «Мозгу»). Остальные уровни иерархии представлены процессорами, содержащими символы записанных образов. Показано, что символы представляют собой субъективную (условную) информацию, создаваемую самой системой и обеспечивающую ее индивидуальность. Совокупность высоких уровней иерархии, содержащих символы абстрактных понятий, дает возможность интерпретировать понятия «сознание», «подсознание», «интуиция», относящиеся к области «Разума», в терминах ансамбля нейронов. Таким образом, ДТИ дает возможность построить модель, позволяющую проследить, как на основе «Мозга» возникает «Разум».
Ключевые слова: информация, когнитивный процесс, образ, символ, нейропроцессор, шум, принцип почернения связей, вербализация, борьба условных информаций.
Dynamical theory of information as a basis for natural-constructive approach to modeling a cognitive process
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 433-447Просмотров за год: 6.The main statements and inferences of the Dynamic Theory Information (DTI) are considered. It is shown that DTI provides the possibility two reveal two essentially important types of information: objective (unconventional) and subjective (conventional) informtion. There are two ways of obtaining information: reception (perception of an already existing one) and generation (production of new) information. It is shown that the processes of generation and perception of information should proceed in two different subsystems of the same cognitive system. The main points of the Natural-Constructivist Approach to modeling the cognitive process are discussed. It is shown that any neuromorphic approach faces the problem of Explanatory Gap between the “Brain” and the “Mind”, i. e. the gap between objectively measurable information about the ensemble of neurons (“Brain”) and subjective information about the human consciousness (“Mind”). The Natural-Constructive Cognitive Architecture developed within the framework of this approach is discussed. It is a complex block-hierarchical combination of several neuroprocessors. The main constructive feature of this architecture is splitting the whole system into two linked subsystems, by analogy with the hemispheres of the human brain. One of the subsystems is processing the new information, learning, and creativity, i.e. for the generation of information. Another subsystem is responsible for processing already existing information, i.e. reception of information. It is shown that the lowest (zero) level of the hierarchy is represented by processors that should record images of real objects (distributed memory) as a response to sensory signals, which is objective information (and refers to the “Brain”). The next hierarchy levels are represented by processors containing symbols of the recorded images. It is shown that symbols represent subjective (conventional) information created by the system itself and providing its individuality. The highest hierarchy levels containing the symbols of abstract concepts provide the possibility to interpret the concepts of “consciousness”, “sub-consciousness”, “intuition”, referring to the field of “Mind”, in terms of the ensemble of neurons. Thus, DTI provides an opportunity to build a model that allows us to trace how the “Mind” could emerge basing on the “Brain”.
-
Оценка масштабируемости программы расчета движения примесей в атмосфере средствами симулятора gem5
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 773-794В данной работе мы предлагаем новую эффективную программную реализацию алгоритма расчета трансконтинентального переноса примеси в атмосфере от естественного или антропогенного источника на адаптивной конечно-разностной сетке, концентрирующей свои узлы внутри переносимого облака примеси, где наблюдаются резкие изменения значений ее массовой доли, и максимально разрежающей узлы во всех остальных частях атмосферы, что позволяет минимизировать общее количество узлов. Особенностью реализации является представление адаптивной сетки в виде комбинации динамических (дерево, связный список) и статических (массив) структур данных. Такое представление сетки позволяет увеличить скорость выполнения расчетов в два раза по сравнению со стандартным подходом представления адаптивной сетки только через динамические структуры данных.
Программа создавалась на компьютере с шестиядерным процессором. С помощью симулятора gem5, позволяющего моделировать работу различных компьютерных систем, была произведена оценка масштабируемости программы при переходе на большее число ядер (вплоть до 32) на нескольких моделях компьютерной системы вида «вычислительные ядра – кэш-память – оперативная память» с разной степенью детализации ее элементов. Отмечено существенное влияние состава компьютерной системы на степень масштабируемости исполняемой на ней программы: максимальное ускорение на 32-х ядрах при переходе от двухуровневого кэша к трехуровневому увеличивается с 14.2 до 22.2. Время выполнения программы на модели компьютера в gem5 превосходит время ее выполнения на реальном компьютере в 104–105 раз в зависимости от состава модели и составляет 1.5 часа для наиболее детализированной и сложной модели.
Также в статье рассматриваются подробный порядок настройки симулятора gem5 и наиболее оптимальный с точки зрения временных затрат способ проведения симуляций, когда выполнение не представляющих интерес участков кода переносится на физический процессор компьютера, где работает gem5, а непосредственно внутри симулятора выполняется лишь исследуемый целевой кусок кода.
Evaluation of the scalability property of the program for the simulation of atmospheric chemical transport by means of the simulator gem5
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 773-794In this work we have developed a new efficient program for the numerical simulation of 3D global chemical transport on an adaptive finite-difference grid which allows us to concentrate grid points in the regions where flow variables sharply change and coarsen the grid in the regions of their smooth behavior, which significantly minimizes the grid size. We represent the adaptive grid with a combination of several dynamic (tree, linked list) and static (array) data structures. The dynamic data structures are used for a grid reconstruction, and the calculations of the flow variables are based on the static data structures. The introduction of the static data structures allows us to speed up the program by a factor of 2 in comparison with the conventional approach to the grid representation with only dynamic data structures.
We wrote and tested our program on a computer with 6 CPU cores. Using the computer microarchitecture simulator gem5, we estimated the scalability property of the program on a significantly greater number of cores (up to 32), using several models of a computer system with the design “computational cores – cache – main memory”. It has been shown that the microarchitecture of a computer system has a significant impact on the scalability property, i.e. the same program demonstrates different efficiency on different computer microarchitectures. For example, we have a speedup of 14.2 on a processor with 32 cores and 2 cache levels, but we have a speedup of 22.2 on a processor with 32 cores and 3 cache levels. The execution time of a program on a computer model in gem5 is 104–105 times greater than the execution time of the same program on a real computer and equals 1.5 hours for the most complex model.
Also in this work we describe how to configure gem5 and how to perform simulations with gem5 in the most optimal way.
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
Ключевые слова: уравнение влагопереноса, интегро-дифференциальное уравнение, разностные схемы, оператор Бесселя, априорная оценка, устойчивость, сходимость.
Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект.
Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.
The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.
In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.
To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.
The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.
-
Эффективные генераторы псевдослучайных чисел при молекулярном моделировании на видеокартах
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 287-308Динамика Ланжевена, метод Монте-Карло и моделирование молекулярной динамики в неявном растворителе требуют больших массивов случайных чисел на каждом шаге расчета. Мы исследовали два подхода в реализации генераторов на графических процессорах. Первый реализует последовательный алгоритм генератора на каждом потоке в отдельности. Второй основан на возможности взаимодействия между потоками и реализует общий алгоритм на всех потоках в целом. Мы покажем использование этих подходов на примере алгоритмов Ran 2, Hybrid Taus и Lagged Fibonacci. Для проверки случайности полученных чисел мы использовали разработанные генераторы при моделировании динамики Ланжевена N независимых гармонических осцилляторов в термостате. Это позволило нам оценить статистические характеристики генераторов. Мы также исследовали производительность, использование памяти и ускорение, получаемое при переносе алгоритма с центрального на графический процессор.
Ключевые слова: псевдослучайные числа, графический процессор, генератор, молекулярное моделирование.
Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308Просмотров за год: 11. Цитирований: 2 (РИНЦ).Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).
-
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Просмотров за год: 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
-
Режимы с обострением в истории человечества или воспоминания о будущем
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.
Ключевые слова: биологическая и социальная эволюция, гиперболический рост, переходные процессы, стабилизация.
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
-
Снижение частоты промахов в неинклюзивный кэш с инклюзивным справочником многоядерного процессора
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 639-656Хотя эпоха экспоненциального роста производительности компьютерных микросхем закончилась, даже настольные процессоры общего назначения сегодня имеют 16 и больше ядер. Поскольку пропускная способность памяти DRAM растет не с такой скоростью, как вычислительная мощность ядер, разработчики процессоров должны искать пути уменьшения частоты обменов с памятью на одну инструкцию. Непосредственным путем к этому является снижение частоты промахов в кэш последнего уровня. Предполагая уже реализованной схему «неинклюзивный кэш с инклюзивным справочником» (NCID), три способа дальнейшего снижения частоты промахов были исследованы.
Первый способ — это достижение более равномерного использования банков и наборов кэша применением хэш-функций для интерливинга и индексирования. В экспериментах в тестах SPEC CPU2017 refrate, даже простейшие хэш-функции на основе XOR показали увеличение производительности на 3,2%, 9,1% и 8,2% в конфигурациях процессора с 16, 32 и 64 ядрами и банками общего кэша, сравнимое с результатами для более сложных функций на основе матриц, деления и CRC.
Вторая оптимизация нацелена на уменьшение дублирования на разных уровнях кэшей путем автоматического переключения на эксклюзивную схему, когда она выглядит оптимальной. Известная схема этого типа, FLEXclusion, была модифицирована для использования в NCID-кэшах и показала улучшение производительности в среднемна 3,8%, 5,4% и 7,9% для 16-, 32- и 64-ядерных конфигураций.
Третьей оптимизацией является увеличение фактической емкости кэша использованием компрессии. Частота сжатия недорогим и быстрыма лгоритмом B DI*-HL (Base-Delta-Immediate Modified, Half-Line), разработанным для NCID, была измерена, и соответствующее увеличение емкости кэша дало около 1% среднего повышения производительности.
Все три оптимизации могут сочетаться и продемонстрировали прирост производительности в 7,7%, 16% и 19% для конфигураций с 16, 32 и 64 ядрами и банками соответственно.
Ключевые слова: многоядерный процессор, подсистема памяти, распределенный общий кэш, NCID, хэш-функции на основе XOR, компрессия данных.
Reducing miss rate in a non-inclusive cache with inclusive directory of a chip multiprocessor
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 639-656Although the era of exponential performance growth in computer chips has ended, processor core numbers have reached 16 or more even in general-purpose desktop CPUs. As DRAM throughput is unable to keep pace with this computing power growth, CPU designers need to find ways of lowering memory traffic per instruction. The straightforward way to do this is to reduce the miss rate of the last-level cache. Assuming “non-inclusive cache, inclusive directory” (NCID) scheme already implemented, three ways of reducing the cache miss rate further were studied.
The first is to achieve more uniform usage of cache banks and sets by employing hash-based interleaving and indexing. In the experiments in SPEC CPU2017 refrate tests, even the simplest XOR-based hash functions demonstrated a performance increase of 3.2%, 9.1%, and 8.2% for CPU configurations with 16, 32, and 64 cores and last-level cache banks, comparable to the results of more complex matrix-, division- and CRC-based functions.
The second optimisation is aimed at reducing replication at different cache levels by means of automatically switching to the exclusive scheme when it appears optimal. A known scheme of this type, FLEXclusion, was modified for use in NCID caches and showed an average performance gain of 3.8%, 5.4 %, and 7.9% for 16-, 32-, and 64-core configurations.
The third optimisation is to increase the effective cache capacity using compression. The compression rate of the inexpensive and fast BDI*-HL (Base-Delta-Immediate Modified, Half-Line) algorithm, designed for NCID, was measured, and the respective increase in cache capacity yielded roughly 1% of the average performance increase.
All three optimisations can be combined and demonstrated a performance gain of 7.7%, 16% and 19% for CPU configurations with 16, 32, and 64 cores and banks, respectively.
-
Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.
Ключевые слова: импульсная нейронная сеть, гомеостатическая синаптическая пластичность, распознавание пространственно-временных паттернов, рабочая память, нейрон – интегратор с утечкой, адаптивный пороговый мембранный потенциал, STDP.
Exploration of 2-neuron memory units in spiking neural networks
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 401-416Working memory mechanisms in spiking neural networks consisting of leaky integrate-and-fire neurons with adaptive threshold and synaptic plasticity are studied in this work. Moderate size networks including thousands of neurons were explored. Working memory is a network ability to keep in its state the information about recent stimuli presented to the network such that this information is sufficient to determine which stimulus has been presented. In this study, network state is defined as the current characteristics of network activity only — without internal state of its neurons. In order to discover the neuronal structures serving as a possible substrate of the memory mechanism, optimization of the network parameters and structure using genetic algorithm was carried out. Two kinds of neuronal structures with the desired properties were found. These are neuron pairs mutually connected by strong synaptic links and long tree-like neuronal ensembles. It was shown that only the neuron pairs are suitable for efficient and reliable implementation of working memory. Properties of such memory units and structures formed by them are explored in the present study. It is shown that characteristics of the studied two-neuron memory units can be set easily by the respective choice of the parameters of its neurons and synaptic connections. Besides that, this work demonstrates that ensembles of these structures can provide the network with capability of unsupervised learning to recognize patterns in the input signal.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"