Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
<span class="authors3">Русаков А.В., span> <span class="authors3">Бобырев А.Е., span> <span class="authors3">Бурменский В.А., span> <span class="authors3">Криксунов Е.А., span> <span class="authors3">Нуриева Н.И., span> <span class="authors3">Медвинский А.Б.span>
Математическая модель озерного сообщества с учетом целочисленности размера популяции: хаотические и долгопериодные колебания
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 229-239В работе представлены результаты исследования целочисленной модели водного сообщества, состоящего из популяций зоопланктона, мирной и хищной рыбы. Рассматривается структура популяции гидробионтов по массе и по возрасту, а также описываются соответствующие такой структуре трофические взаимодействия между популяциями. Модель воспроизводит различные динамические режимы: стационарные и колебательные. Колебания численности рыбных популяций при этом могут быть регулярными и нерегулярными. Показано, что период регулярных колебаний может составлять десятки лет, а нерегулярные колебания численности рыбных популяций могут быть как хаотическими, так и нехаотическими. В результате анализа модели в пространстве параметров показано, что предсказуемость динамики рыбных популяций может быть затруднена не только в результате возникновения динамического хаоса, но и в результате конкуренции между различными динамическими режимами, возникающей при вариации параметров модели, в частности при изменениях скорости роста зоопланктона.
Ключевые слова: математическое моделирование водного сообщества, целочисленное моделирование, долгопериодические колебания, хаос.<span class="authors3">Rusakov A.V., span> <span class="authors3">Bobyrev A.E., span> <span class="authors3">Burmensky V.A., span> <span class="authors3">Kriksunov E.A., span> <span class="authors3">Nurieva N.I., span> <span class="authors3">Medvinsky A.B.span>
An integer-valued mathematical model of lake communities: Chaotic and long-period oscillations in the fish population size
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 229-239Просмотров за год: 6.We present the results of a mathematical model for the aquatic communities which include zooplankton, planktivorous fish and predator fish. The aquatic populations are considered to be body mass- and agestructured, while the trophic relations between the populations to be correspondingly status-specific. The model reproduces diverse dynamic regimes as such steady states and oscillations in the population size. Oscillations in the fish population size are shown to be both regular and irregular. We show that the period of the regular oscillations can be up to decades. The irregular oscillations are shown to be both chaotic and non-chaotic. Analyzing the dynamics in the model parameter space has enabled us to conclude that predictability of fish population dynamics can face difficulties both due to dynamical chaos and to the competition between various dynamical regimes caused by variations in the model parameters, specifically in the zooplankton growth rate.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"