Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обзор современных технологий извлечения знаний из текстовых сообщений
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.
Ключевые слова: извлечение знаний, извлечение информации, обработка естественного языка, машинное обучение, семантическое аннотирование.
Extracting knowledge from text messages: overview and state-of-the-art
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.
-
Частотные, временные и пространственные изменения электроэнцефалограммы после COVID-19 при выполнении простого речевого задания
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 691-701Используя анализ данных и применение нейронных сетей в нашей работе, мы выявили закономерности электрической активности мозга, характеризующие COVID-19. Нас интересовали частотные, временные и пространственные паттерны электрической активности у людей, перенесших COVID-19. Мы обнаружили преобладание паттернов $\alpha$-ритма в левом полушарии у здоровых людей по сравнению с людьми, переболевшими COVID-19. Более того, мы наблюдаем значительное снижение вклада левого полушария в области речевого центра у людей, перенесших COVID-19, при выполнении речевых заданий. Наши результаты показывают, что сигнал у здоровых людей более пространственно локализован и синхронизирован между полушариями при выполнении задач по сравнению с людьми, перенесшими COVID-19. Мы также наблюдали снижение низких частот в обоих полушариях после COVID-19. Электроэнцефалографические (ЭЭГ) паттерны COVID-19 обнаруживаются в необычной частотной области. То, что обычно считается шумом в ЭЭГ-данных, несет в себе информацию, по которой можно определить, переболел ли человек COVID-19. Эти паттерны можно интерпретировать как признаки десинхронизации полушарий, преждевременного старения мозга и стресса при выполнении простых задач по сравнению с людьми без COVID-19 в анамнезе. В нашей работе мы показали применимость нейронных сетей для выявления долгосрочных последствий COVID-19 на данные ЭЭГ. Кроме того, наши данные подтвердили гипотезу о тяжести последствий COVID-19, обнаруженных по ЭЭГ-данным. Представленные результаты функциональной активности мозга позволяют использовать методы машинного обучения на простых неинвазивных интерфейсах «мозг–компьютер» для выявления пост-COVID-синдрома и прогресса в нейрореабилитации.
Ключевые слова: COVID-19, интерфейс «мозг–компьютер», ЭЭГ, частотные паттерны, строение мозга, нейрореабилитация, постковидный синдром, глубокое обучение.
Frequency, time, and spatial electroencephalogram changes after COVID-19 during a simple speech task
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 691-701We found a predominance of α-rhythm patterns in the left hemisphere in healthy people compared to people with COVID-19 history. Moreover, we observe a significant decrease in the left hemisphere contribution to the speech center area in people who have undergone COVID-19 when performing speech tasks.
Our findings show that the signal in healthy subjects is more spatially localized and synchronized between hemispheres when performing tasks compared to people who recovered from COVID-19. We also observed a decrease in low frequencies in both hemispheres after COVID-19.
EEG-patterns of COVID-19 are detectable in an unusual frequency domain. What is usually considered noise in electroencephalographic (EEG) data carries information that can be used to determine whether or not a person has had COVID-19. These patterns can be interpreted as signs of hemispheric desynchronization, premature brain ageing, and more significant brain strain when performing simple tasks compared to people who did not have COVID-19.
In our work, we have shown the applicability of neural networks in helping to detect the long-term effects of COVID-19 on EEG-data. Furthermore, our data following other studies supported the hypothesis of the severity of the long-term effects of COVID-19 detected on the EEG-data of EEG-based BCI. The presented findings of functional activity of the brain– computer interface make it possible to use machine learning methods on simple, non-invasive brain–computer interfaces to detect post-COVID syndrome and develop progress in neurorehabilitation.
-
Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.
Ключевые слова: криптовалюты, Twitter, машинное обучение, обработка естественного языка, векторизация, dense модель, логистическая регрессия, случайный лес, KNN, наивный байесовский классификатор.
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
-
Решение негладких распределенных минимаксных задач с применением техники сглаживания
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.
Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.
Ключевые слова: выпуклая оптимизация, распределенная оптимизация.
Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.
We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.
Keywords: convex optimization, distributed optimization. -
Сравнительный анализ статистических методов классификации научных публикаций в области медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 921-933В работе проведено сравнение различных методов машинной классификации научных текстов по тематическим разделам на примере публикаций в профильных медицинских журналах, выпускаемых издательством Springer. Исследовался корпус текстов по пяти разделам: фармакология/токсикология, кардиология, иммунология, неврология и онкология. Рассматривались как методы поверхностной классификации, основанные на анализе аннотаций и ключевых слов, так и методы классификации на основе обработки собственно текстов. Были применены методы байесовской классификации, опорных векторов и эталонных буквосочетаний. Показано, что наилучшую точность имеет метод классификации на основе создания библиотеки эталонов буквенных триграмм, отвечающих текстам определенной тематики, а семантические методы уступают ему по точности. Выяснилось, что применительно к рассматриваемому корпусу текстов байесовский метод дает ошибку порядка 20 %, метод опорных векторов имеет ошибку порядка 10 %, а метод близости распределения текста к трехбуквенному эталону тематики дает ошибку порядка 5 %, что позволяет ранжировать эти методы для использования искусственного интеллекта в задачах классификации текстов по отраслевым специальностям. Существенно, что при анализе аннотаций метод опорных векторов дает такую же точность, что и при анализе полных текстов, что важно для сокращения числа операций для больших корпусов текстов.
Comparative analysis of statistical methods of scientific publications classification in medicine
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 921-933In this paper the various methods of machine classification of scientific texts by thematic sections on the example of publications in specialized medical journals published by Springer are compared. The corpus of texts was studied in five sections: pharmacology/toxicology, cardiology, immunology, neurology and oncology. We considered both classification methods based on the analysis of annotations and keywords, and classification methods based on the processing of actual texts. Methods of Bayesian classification, reference vectors, and reference letter combinations were applied. It is shown that the method of classification with the best accuracy is based on creating a library of standards of letter trigrams that correspond to texts of a certain subject. It is turned out that for this corpus the Bayesian method gives an error of about 20%, the support vector machine has error of order 10%, and the proximity of the distribution of three-letter text to the standard theme gives an error of about 5%, which allows to rank these methods to the use of artificial intelligence in the task of text classification by industry specialties. It is important that the support vector method provides the same accuracy when analyzing annotations as when analyzing full texts, which is important for reducing the number of operations for large text corpus.
-
Использование синтаксических деревьев для автоматизации коррекции документов в формате LaTeX
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 871-883Рассматривается задача автоматизации коррекции документов в формате LaTeX. Каждый документ представляется в виде синтаксического дерева. С помощью модифицированного алгоритма Zhang-Shasha строится отображение вершин дерева изначального документа в вершины дерева отредактированного документа, соответствующее минимальному редактирующему расстоянию. Отображения вершины в вершину составляют обучающую выборку, по которой генерируются правила замены для автоматической коррекции. Для каждого правила собирается статистика его применимости к отредактированным документам. На ее основе производится оценка качества правил и их улучшение.
Ключевые слова: автоматизация, анализ текста, лексема, машинное обучение, метрика, обучение с подкреплением, регулярное выражение, редактирующее расстояние, синтаксическое дерево, токен, LaTeX.
The use of syntax trees in order to automate the correction of LaTeX documents
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 871-883Цитирований: 5 (РИНЦ).The problem is to automate the correction of LaTeX documents. Each document is represented as a parse tree. The modified Zhang-Shasha algorithm is used to construct a mapping of tree vertices of the original document to the tree vertices of the edited document, which corresponds to the minimum editing distance. Vertex to vertex maps form the training set, which is used to generate rules for automatic correction. The statistics of the applicability to the edited documents is collected for each rule. It is used for quality assessment and improvement of the rules.
-
Персонализация математических моделей в кардиологии: трудности и перспективы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.
Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.
Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.
Ключевые слова: вычислительная биомеханика, персонализированная модель.
Personalization of mathematical models in cardiology: obstacles and perspectives
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model. -
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети.
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
-
Метод представления дифракционных изображений XFEL для классификации, индексации и поиска
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 631-639В работе представлены результаты применения алгоритмов машинного обучения: метода главных компонент и метода опорных векторов для классификации дифракционных изображений, полученных в экспериментах на лазерах на свободных электронах. Показана высокая эффективность применения такого подхода с использованием модельных данных дифракции лазерного пучка на капсиде аденовируса и вируса катаральной лихорадки, в которых учтены условия реального эксперимента на лазерах на свободных электронах, такие как шум и особенности используемых детекторов.
XFEL diffraction patterns representation method for classification, indexing and search
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 631-639Просмотров за год: 6.The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and bluetongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"