Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Облачные технологии широко распространены в ИТ и начинают набирать популярность в научной среде. Существует несколько базовых моделей облачных сред: инфраструктура как услуга (IaaS, англ. Infrastructure-as-a-Service), платформа как услуга (PaaS, англ. Platform-as-a-Service), программное обеспечение как услуга (SaaS, англ. Software-as-a-Service). В данной статье рассматривается облачная инфра- структура, созданная в Лаборатории информационных технологий Объединённого Института Ядерных Исследований (ЛИТ ОИЯИ). Описаны цели создания облачной инфраструктуры, особенности ее реализации, использование, текущие работы и планы по развитию.
Ключевые слова: облачные технологии, виртуализация.Cloud technologies are already wide spread among IT industry and start to gain popularity in academic field. There are several fundamental cloud models: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). The article describes the cloud infrastructure deployed at the Laboratory of Information Technologies of the Joint Institute for Nuclear Research (LIT JINR). It explains the goals of the cloud infrastructure creation, specifics of the implementation, its utilization, current work and plans for development.
Keywords: cloud technologies, virtualization.Просмотров за год: 1. Цитирований: 5 (РИНЦ). -
Эмпирическая проверка теории институциональных матриц методами интеллектуального анализа данных
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 923-939Цель настоящего исследования состояла в установлении достоверной взаимосвязи показателей внешней среды и уровня освоенности территорий с характером доминирующих в странах институциональных матриц. Среди индикаторов внешних условий представлены как исходные статистические показатели, напрямую полученные из баз данных открытого доступа, так и сложные интегральные показатели, сформированные путем применения метода главных компонент. Оценка точности распознавания стран с доминированием X- или Y-институциональных матриц по перечисленным показателям проводилась с помощью ряда методов, основанных на машинном обучении. Была выявлена высокая информативность таких показателей, как освоенность территории, амплитуда осадков, летние и зимние температуры, уровень рисков.
Ключевые слова: теория институциональных матриц, машинное обучение.
Empirical testing of institutional matrices theory by data mining
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 923-939The paper has a goal to identify a set of parameters of the environment and infrastructure with the most significant impact on institutional-matrices that dominate in different countries. Parameters of environmental conditions includes raw statistical indices, which were directly derived from the databases of open access, as well as complex integral indicators that were by method of principal components. Efficiency of discussed parameters in task of dominant institutional matrices type recognition (X or Y type) was evaluated by a number of methods based on machine learning. It was revealed that greatest informational content is associated with parameters characterizing risk of natural disasters, level of urbanization and the development of transport infrastructure, the monthly averages and seasonal variations of temperature and precipitation.
Keywords: institutional matrices theory, machine learning.Просмотров за год: 7. Цитирований: 13 (РИНЦ). -
Биогидрохимический портрет Белого моря
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 125-160Биогидрохимический портрет Белого моря построен с помощью расчетов на CNPSi-модели по систематизированным среднемноголетним наблюдениям (среднемесячные гидрометеорологические, гидрохимические и гидробиологические параметры морской среды). Также в расчетах использована уточненная информация о выносе в морские акватории биогенных веществ со стоком основных рекритоков (Нива, Онега, Северная Двина, Мезень, Кемь, Кереть). Параметры морской среды — значения температуры, освещенности, прозрачности, биогенной нагрузки. Для девяти районов моря (заливы Кандалакшский, Онежский, Двинский, Мезенский, Соловецкие о-ва, Бассейн, Горло, Воронка, губа Чупа) характеристики портрета моря включают: изменение в течение года концентраций органических и минеральных соединений биогенных элементов (С, N, P, Si), биомассы организмов низших трофических звеньев (гетеротрофные бактерии, диатомовый фитопланктон, растительноядный и хищный зоопланктон) и другие показатели (скорости изменения концентраций веществ и биомасс организмов, внутренние и внешние потоки веществ, балансы отдельных веществ и биогенных элементов в целом). Расчетные по среднемноголетним данным показатели состояния морской среды (температура воды, соотношения минеральных фракций N < P) и доминирующего диатомового фитопланктона в море (обилие, продукция, биомасса, содержание хлорофилла а) сравнивали с результатами отдельных съемок (за 1972–1991 и 2007–2012 гг.) по районам моря. При очевидных отличиях способов оценки значений показателей (по наблюдениям — аналитические методы, а при расчетах на модели — вычисления по соответствующим уравнениям) отмечена близость расчетных показателей состояния фитопланктона приведенным в литературе данным по фитопланктону Белого моря. Так, литературные оценки годовой продукции диатомовых водорослей в Белом море находятся в пределах 1.5–3 млн т С (при продолжительности вегетации 180 сут), а по расчетам она составляет ~2 и 3.5 млн т С при принимаемых периодах вегетации в 150 и 180 сут соответственно.
Ключевые слова: экосистема Белого моря, биогенные вещества (БВ), гетеротрофный бактериопланктон, диатомовый фитопланктон, растительноядный и хищный зоопланктон, детрит, трофическая цепь, CNPSi-модель биотрансформации БВ, экологический портрет Белого моря, сравнение наблюдаемых и расчетных показателей диатомовых водорослей (обилие, продукция, биомасса, хлорофилл а).
Biohydrochemical portrait of the White Sea
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.
Keywords: White Sea ecosystem, nutrients, heterotrophic bacterioplankton, diatom phytoplankton, herbivorous and predatory zooplankton, detritus, trophic chain, CNPSi-model of nutrient biotransformation, ecological portrait of the White Sea, the comparison of the observed and calculated parameters of diatoms (abundance, products, biomass, chlorophyll a).Просмотров за год: 15. Цитирований: 1 (РИНЦ). -
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Просмотров за год: 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Методика имитационного моделирования на основе обучающих данных для двухфазного течения в гетерогенной пористой среде
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 779-792Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.
Ключевые слова: имитационное моделирование, нейросетевые модели физических процессов, суррогатное моделирование, гидродинамика, пористая среда, сверточные нейронные сети, состязательное обучение.
Data-driven simulation of a two-phase flow in heterogenous porous media
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.
-
Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.
Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.
Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.
С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.
Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.
В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.
Ключевые слова: моделирование социальной напряженности, уточнение коэффициентов модели, оценка стабильности, региональные особенности, нормировка статистических данных.
Assessment of the elite–people interaction in post-soviet countries using the Bayesian approach
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1233-1247A previously developed model that describes the dynamics of social tension in a society divided into two groups: the elite and the people was considered. This model took into account the impact of economic situation changes and the elite–people interaction. The model has been modified by including in the equation describing the tension of the people, a term that takes into account the adaptation of the people to the current situation.
The model coefficients estimation is an important task, the solution of which allows obtaining information about the nature of the interaction between elite and people. We believe that the solution of the system of model equations with optimal coefficients is closest to the values of the indicator characterizing social tension. We used the normalized level of homicide rate as an indicator of social tension.
The model contains seven coefficients. Two coefficients characterizing the influence of economic situation changes on elite and people are taken equal to each other and the same for all countries. We obtained their estimations using a simplified model that takes into account only the change in the economic situation and allows an analytical solution.
The Bayesian approach was used to estimate the remaining five coefficients of model for post-Soviet countries. The prior probability densities of the four coefficients for all countries under consideration were taken to be the same. The prior probability density of fifth coefficient was considered to depend on the regime of government (authoritarian or «transitional»). We assumed that the calculated tension matches with the corresponding indicator of tension in cases where the difference between them does not exceed 5%.
The calculations showed that for the post-Soviet countries, a good coincidence was obtained between the calculated values of the people tension and the normalized level of homicide rate. The coincidence is satisfactory only on average.
The following main results was obtained at the work: under the influence of some «significant» events in 40% of post-Soviet countries, there was a rapid change in the nature of interaction between the elite and the people; regional feature have some influence on the elite–people interaction; the type of government does not significantly affect the elite–people interaction; the method for assessing the stability of the country by the value of the model coefficients is proposed.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Ключевые слова: coffee berry disease (CBD), Colletotrichum kahawae pathogen, epidemic mathematical model, sensitivity analysis, Shehu transformation, Akbari – Ganji’s method (AGM), Pade approximation method, numerical simulation.
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Оценка кредитного риска на основе методов многомерного анализа
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 893-901В статье предложена авторская методика многомерного анализа для формирования прогнозной оценки кредитного риска организаций, основанная на использовании информации кредитных историй, учитывающая объемы и сроки предоставляемых кредитов. Рассмотрен пример оценки кредитного риска на статистических данных кредитной организации.
Ключевые слова: оценка и прогнозирование риска, многомерный анализ данных, кластерный анализ, факторный анализ, кредитные организации.
Credit risk assessment on the basis of multidimensional analysis
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 893-901Просмотров за год: 7. Цитирований: 19 (РИНЦ).The article is devoted to description the author's method of multidimensional analysis for generate an predictive assessment of organizations’ credit risk, based on the credit history information, which taking into account value and period of credit. An example of credit risk assessment is given.
-
Распределенные вычисления для эксперимента BES-III
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 469-473В 2009 году в Пекине заработал детектор BES-III (Beijing Spectrometer) [1] ускорителя BEPC-II (Beijing Electron–Positron Collider). Запущенный еще в 1989 году BEPC за время своей работы предоставил данные для целого ряда открытий в области физики очарованных частиц. В свою очередь на BES-III удалось получить крупнейшие наборы данных для J/ ψ, ψ' и ψ частиц при энергии ускорителя 2.5– 4.6 ГэВ. Объемы данных с эксперимента (более 1 ПБ) достаточно велики, чтобы задуматься об их распределенной обработке. В данной статье представлена общая информация, результаты и планы развития проекта распределенной обработки данных эксперимента BES-III.
Ключевые слова: BES-III, распределённый компьютинг, грид системы, DIRAC Interware, обработка данных.Просмотров за год: 3.The BES-III experiment at the IHEP CAS, Beijing, is running at the high-luminosity e+e- collider BEPC-II to study physics of charm quarks and tau leptons. The world largest samples of J/psi and psi' events are already collected, a number of unique data samples in the energy range 2.5–4.6 GeV have been taken. The data volume is expected to increase by an order of magnitude in the coming years. This requires to move from a centralized computing system to a distributed computing environment, thus allowing the use of computing resources from remote sites — members of the BES-III Collaboration. In this report the general information, latest results and development plans of the BES-III distributed computing system are presented.
-
Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.
Ключевые слова: импульсная нейронная сеть, гомеостатическая синаптическая пластичность, распознавание пространственно-временных паттернов, рабочая память, нейрон – интегратор с утечкой, адаптивный пороговый мембранный потенциал, STDP.
Exploration of 2-neuron memory units in spiking neural networks
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 401-416Working memory mechanisms in spiking neural networks consisting of leaky integrate-and-fire neurons with adaptive threshold and synaptic plasticity are studied in this work. Moderate size networks including thousands of neurons were explored. Working memory is a network ability to keep in its state the information about recent stimuli presented to the network such that this information is sufficient to determine which stimulus has been presented. In this study, network state is defined as the current characteristics of network activity only — without internal state of its neurons. In order to discover the neuronal structures serving as a possible substrate of the memory mechanism, optimization of the network parameters and structure using genetic algorithm was carried out. Two kinds of neuronal structures with the desired properties were found. These are neuron pairs mutually connected by strong synaptic links and long tree-like neuronal ensembles. It was shown that only the neuron pairs are suitable for efficient and reliable implementation of working memory. Properties of such memory units and structures formed by them are explored in the present study. It is shown that characteristics of the studied two-neuron memory units can be set easily by the respective choice of the parameters of its neurons and synaptic connections. Besides that, this work demonstrates that ensembles of these structures can provide the network with capability of unsupervised learning to recognize patterns in the input signal.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"