Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование цитокинового шторма при респираторных вирусных инфекциях
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 619-645В данной работе мы разрабатываем модель иммунного ответа на респираторные вирусные инфекции с учетом некоторых особенностей инфекции SARS-CoV-2. Модель представляет из себя систему обыкновенных дифференциальных уравнений для концентраций эпителиальных клеток, иммунных клеток, вируса и воспалительных цитокинов. Анализ существования и устойчивости стационарных точек дополняется численным моделированием с целью изучения динамики решений. Поведение решений характеризуется большим ростом концентрации вируса, наблюдаемым для острых респираторных вирусных инфекций.
На первом этапе мы изучаем врожденный иммунный ответ, основанный на защитных свойствах интерферона, производимого инфицированными вирусом клетками. С другой стороны, вирусная инфекция подавляет выработку интерферона. Их конкуренция может привести к бистабильности системы с разными режимами развития инфекции с высокой или низкой интенсивностью. В случае острого протекания заболевания и существенного роста концентрации вируса инкубационный период и максимальная вирусная нагрузка зависят от исходной вирусной нагрузки и параметров иммунного ответа. В частности, увеличение исходной вирусной нагрузки приводит к сокращению инкубационного периода и увеличению максимальной вирусной нагрузки.
Для изучения возникновения и динамики цитокинового шторма в модель вводится уравнение для концентрации провоспалительных цитокинов, производимых клетками врожденного иммунного ответа. В зависимости от параметров система может оставаться в режиме с относительно низким уровнем провосполительных цитокинов, наблюдаемым для обычного протекания вирусных инфекций, или за счет положительной обратной связи между воспалением и иммунными клетками перейти в режим цитокинового шторма, характеризующегося избыточным производством провоспалительных цитокинов. При этом цитокиновый шторм, вызванный вирусной инфекцией, может продолжаться и после ее окончания. Кроме того, гибель клеток, инициируемая провосполительными цитокинами (апоптоз), может стимулировать переход к цитокиновому шторму. Однако апоптоз в отдельности от врожденного иммунного ответа не может инициировать или поддерживать протекание цитокинового шторма. Предположения модели и полученные результаты находятся в качественном согласии с экпериментальными и клиническими данными.
Modelling of cytokine storm in respiratory viral infections
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.
At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.
In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.
-
Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.
Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.
В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.
Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.
Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.
Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.
Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.
Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.
Ключевые слова: система «паразит – хозяин», коронавирусная инфекция, эпидемический процесс, гетерогенная популяция.
Mathematical model of the parasite – host system with distributed immunity retention time
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.
Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.
In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.
For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.
For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.
Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.
It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.
This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.
-
Функция Ляпунова как инструмент исследования когнитивных и регуляторных процессов организма
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 449-456Когнитивные и регуляторные процессы в организме обеспечиваются функционированием нескольких различных сетевых систем — нервной, эндокринной, иммунной, генной, которые, однако, тесно связаны между собой и образуют единую нейрогеногуморальную когнитивно-регуляторную динамическую сеть организма. Дается обзор работ, показывающих, что с этой сетью можно связать соответствующую ей функцию Ляпунова (функцию энергии, потенциальную функцию), анализ которой, в силу ее геометрической наглядности, позволяет легко обнаружить ряд общих закономерностей, касающихся когнитивной и регуляторной деятельности организма.
Lyapunov function as a tool for the study of cognitive and regulatory processes in organism
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 449-456Просмотров за год: 4. Цитирований: 5 (РИНЦ).Cognitive and regulatory processes in organism are ensured by the functioning of several different network systems — neural, endocrine, immune, and gene ones. These systems are, however, closely related and form a single integrated neurogenohumoral cognitive-regulatory dynamic system of organism. A review of publications is given which shows that it is possible to associate with this dynamic system a corresponding Lyapunov function (energy function, potential function) and that analyzing this function allows, due to its geometrical insight, to easily discover a set of general properties of cognitive and regulatory functioning of organism.
-
Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.
Ключевые слова: главный комплекс гистосовместимости, аффинностьсв язывания, нейронная сеть, машинное обучение, модельП оттса.
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
Ключевые слова: генетические алгоритмы, вариативность, многомерный анализ данных, физико-химические параметры нуклеиновых кислот, конечная геометрия.
Biomathematical system of the nucleic acids description
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 417-434The article is devoted to the application of various methods of mathematical analysis, search for patterns and studying the composition of nucleotides in DNA sequences at the genomic level. New methods of mathematical biology that made it possible to detect and visualize the hidden ordering of genetic nucleotide sequences located in the chromosomes of cells of living organisms described. The research was based on the work on algebraic biology of the doctor of physical and mathematical sciences S. V. Petukhov, who first introduced and justified new algebras and hypercomplex numerical systems describing genetic phenomena. This paper describes a new phase in the development of matrix methods in genetics for studying the properties of nucleotide sequences (and their physicochemical parameters), built on the principles of finite geometry. The aim of the study is to demonstrate the capabilities of new algorithms and discuss the discovered properties of genetic DNA and RNA molecules. The study includes three stages: parameterization, scaling, and visualization. Parametrization is the determination of the parameters taken into account, which are based on the structural and physicochemical properties of nucleotides as elementary components of the genome. Scaling plays the role of “focusing” and allows you to explore genetic structures at various scales. Visualization includes the selection of the axes of the coordinate system and the method of visual display. The algorithms presented in this work are put forward as a new toolkit for the development of research software for the analysis of long nucleotide sequences with the ability to display genomes in parametric spaces of various dimensions. One of the significant results of the study is that new criteria were obtained for the classification of the genomes of various living organisms to identify interspecific relationships. The new concept allows visually and numerically assessing the variability of the physicochemical parameters of nucleotide sequences. This concept also allows one to substantiate the relationship between the parameters of DNA and RNA molecules with fractal geometric mosaics, reveals the ordering and symmetry of polynucleotides, as well as their noise immunity. The results obtained justified the introduction of new terms: “genometry” as a methodology of computational strategies and “genometrica” as specific parameters of a particular genome or nucleotide sequence. In connection with the results obtained, biosemiotics and hierarchical levels of organization of living matter are raised.
-
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа.
Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.
Keywords: data processing, experiment, cytokine, immune system, pneumonia, statistics, approximation, Hausdorff distance.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"