Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
Ключевые слова: гиперболическая модель среды, гиперболические системы, многомерный узловой метод характеристик.
Multidimensional nodal method of characteristics for hyperbolic systems
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 19-32Disclosed is a multidimensional nodal method of characteristics, designed to integrate hyperbolic systems, based on splitting the initial system of equations into a number of one-dimensional subsystems, for which a onedimensional nodal method of characteristics is used. Calculation formulas are given, the calculation method is described in detail in relation to a single-speed model of a heterogeneous medium in the presence of gravity forces. The presented method is applicable to other hyperbolic systems of equations. Using this explicit, nonconservative, first-order accuracy of the method, a number of test tasks are calculated and it is shown that in the framework of the proposed approach, by attracting additional points in the circuit template, it is possible to carry out calculations with Courant numbers exceeding one. So, in the calculation of the flow of the threedimensional step by the flow of a heterogeneous mixture, the Courant number was 1.2. If Godunov’s method is used to solve the same problem, the maximum number of Courant, at which a stable account is possible, is 0.13 × 10-2. Another feature of the multidimensional method of characteristics is the weak dependence of the time step on the dimension of the problem, which significantly expands the possibilities of this approach. Using this method, a number of problems were calculated that were previously considered “heavy” for the numerical methods of Godunov, Courant – Isaacson – Rees, which is due to the fact that it most fully uses the advantages of the characteristic representation of the system of equations.
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
Ключевые слова: гиперболические модели, обратный метод характеристик, многомерный узловой метод характеристик.
About one version of the nodal method of characteristics
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 29-44A variant of the inverse method of characteristics (IMH) is presented, in whose algorithm an additional fractional time step is introduced, which makes it possible to increase the accuracy of calculations due to a more accurate approximation of the characteristics. The calculation formulas of the modified method for the equations of the one-velocity model of a gas-liquid mixture are given, with the help of which one-dimensional and also flat test problems with self-similar solutions are calculated. When solving multidimensional problems, the original system of equations is split into a number of one-dimensional subsystems, for the calculation of which the inverse method of characteristics with a fractional time step is used. Using the proposed method, the following were calculated: the one-dimensional problem of the decay of an arbitrary discontinuity in a dispersed medium; a twodimensional problem of the interaction of a homogeneous gas-liquid flow with an obstacle with an attached shock wave, as well as a flow with a centered rarefaction wave. The results of numerical calculations of these problems are compared with self-similar solutions and their satisfactory agreement is noted. On the example of the Riemann problem with a shock wave, a comparison is made with a number of conservative, non-conservative, first and higher orders of accuracy schemes, from which, in particular, it follows that the presented calculation method, i. e. MIMC, quite competitive. Despite the fact that the application of MIMC requires many times more time than the original inverse method of characteristics (IMC), calculations can be carried out with an increased time step and, in some cases, more accurate results can be obtained. It is noted that the method with a fractional time step has advantages over the IMC in cases where the characteristics of the system are significantly curvilinear. For this reason, the use of MIMC, for example, for the Euler equations is inappropriate, since for the latter the characteristics within the time step differ little from straight lines.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"