Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'general utility function':
Найдено статей: 2
  1. Подлипнова И.В., Персиянов М.И., Швецов В.И., Гасникова Е.В.
    Транспортное моделирование: усреднение ценовых матриц
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 317-327

    В данной работе рассматриваются различные подходы к усреднению обобщенных цен передвижений, рассчитанных для разных способов передвижения в транспортной сети. Под способом передвижения понимается как вид транспорта, например легковой автомобиль или транспорт общего пользования, так и передвижение без использования транспорта, например пешком. Задача расчета матриц передвижений включает в себя задачу вычисления суммарных матриц, иными словами — оценку общего спроса на передвижения всеми способами, а также задачу расщепления матриц по способам передвижений, называемого также модальным расщеплением. Для расчета матриц передвижений используют гравитационные, энтропийные и иные модели, в которых вероятность передвижения между районами оценивается на основе некоторой меры удаленности этих районов друг от друга. Обычно в качестве меры дальности используется обобщенная цена передвижения по оптимальному пути между районами. Однако обобщенная цена передвижения отличается для разных способов передвижения. При расчете суммарных матриц передвижений возникает необходимость усреднения обобщенных цен по способам передвижения. К процедуре усреднения предъявляется естественное требование монотонности по всем аргументам. Этому требованию не удовлетворяют некоторые часто применяемые на практике способы усреднения, например усреднение с весами. Задача модального расщепления решается применением методов теории дискретного выбора. В частности, в рамках теории дискретного выбора разработаны корректные методы усреднения полезности альтернатив, монотонные по всем аргументам. Авторы предлагают некоторую адаптацию методов теории дискретного выбора для применения к вычислению усредненной цены передвижений в гравитационной и энтропийной моделях. Перенос формул усреднения из контекста модели модального расщепления в модель расчета матриц передвижений требует ввода новых параметров и вывода условий на возможное значение этих параметров, что и было проделано в данной статье. Также были рассмотрены вопросы перекалибровки гравитационной функции, необходимой при переходе на новый метод усреднения, если имеющаяся функция откалибрована с учетом использования средневзвешенной цены. Предложенные методики были реализованы на примере небольшого фрагмента транспортной сети. Приведены результаты расчетов, демонстрирующие преимущество предложенных методов.

    Podlipnova I.V., Persiianov M.I., Shvetsov V.I., Gasnikova E.V.
    Transport modeling: averaging price matrices
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 317-327

    This paper considers various approaches to averaging the generalized travel costs calculated for different modes of travel in the transportation network. The mode of transportation is understood to mean both the mode of transport, for example, a car or public transport, and movement without the use of transport, for example, on foot. The task of calculating the trip matrices includes the task of calculating the total matrices, in other words, estimating the total demand for movements by all modes, as well as the task of splitting the matrices according to the mode, also called modal splitting. To calculate trip matrices, gravitational, entropy and other models are used, in which the probability of movement between zones is estimated based on a certain measure of the distance of these zones from each other. Usually, the generalized cost of moving along the optimal path between zones is used as a distance measure. However, the generalized cost of movement differs for different modes of movement. When calculating the total trip matrices, it becomes necessary to average the generalized costs by modes of movement. The averaging procedure is subject to the natural requirement of monotonicity in all arguments. This requirement is not met by some commonly used averaging methods, for example, averaging with weights. The problem of modal splitting is solved by applying the methods of discrete choice theory. In particular, within the framework of the theory of discrete choice, correct methods have been developed for averaging the utility of alternatives that are monotonic in all arguments. The authors propose some adaptation of the methods of the theory of discrete choice for application to the calculation of the average cost of movements in the gravitational and entropy models. The transfer of averaging formulas from the context of the modal splitting model to the trip matrix calculation model requires the introduction of new parameters and the derivation of conditions for the possible value of these parameters, which was done in this article. The issues of recalibration of the gravitational function, which is necessary when switching to a new averaging method, if the existing function is calibrated taking into account the use of the weighted average cost, were also considered. The proposed methods were implemented on the example of a small fragment of the transport network. The results of calculations are presented, demonstrating the advantage of the proposed methods.

  2. Гончаренко В.М., Шаповал А.Б.
    Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 825-836

    В статье показано, что базовые свойства некоторых моделей монополистической конкуренции описываются с помощью семейств гипергеометрических функций. Результаты получены построением модели общего равновесия в многосекторной экономике, производящей дифференцированное благо в $n$ высокотехнологичных секторах, в которых однопродуктовые фирмы конкурируют монополистически, используя одинаковые технологии. Однородный (традиционный) сектор характеризуется совершенной конкуренцией. Работники мотивированы найти работу в высокотехнологичных секторах, так как заработная плата там выше, однако рискуют остаться безработными. Безработица сохраняется в равновесии за счет несовершенства рынка труда. Заработная плата устанавливается фирмами в высокотехнологичных секторах в результате переговоров с работниками. Предполагается, что индивиды однородны как потребители, обладая одинаковыми предпочтениями, которые задаются сепарабельной функцией полезности общего вида. В статье найдены условия, при которых общее равновесие в построенной модели существует и единственно. Условия сформулированы в терминах эластичности замещения $\mathfrak{S}$ между разновидностями дифференцированного блага, которая усреднена по всем потребителям. Найденное равновесие симметрично относительно разновидностей дифференцированного блага. Равновесные переменные представимы в виде неявных функций, свойства которых связаны с введенной авторами эластичностью $\mathfrak{S}$. Полное аналитическое описание равновесных переменных возможно для известных частных случаев функции полезности потребителей, например в случае степенных предпочтений, которые некорректно описывают отклик экономики на изменение размера рынков. Чтобы упростить возникающие неявные функции, мы вводим функции полезности, заданные двумя однопараметрическими семействами гипергеометрических функций. Одно из семейств описывает проконкурентный, а другое — антиконкурентный отклик цен на увеличение размера экономики. Изменение параметра каждого из семейств соответствует перебору всех допустимых значений эластичности $\mathfrak{S}$. В этом смысле гипергеометрические функции исчерпывают естественные функции полезности. Установлено, что с увеличением эластичности замещения между разновидностями дифференцированного блага разница между высокотехнологичным и однородным секторами стирается. Показано, что при большом размере экономики индивиды в равновесии потребляют малое количество каждого товара, как и в случае степенных препочтений. Именно это обстоятельство позволяет приблизить используемые гипергеометрические функции суммой степенных функций в окрестности равновесных значений аргумента. Таким образом, переход от степенных функций полезности к гипергеометрическим, которые аппроксимируются суммой двух степенных функций, с одной стороны, сохраняет все возможности настройки параметров, а с другой — позволяет полностью описать эффекты, связанные с изменением размера секторов экономики.

    Goncharenko V.M., Shapoval A.B.
    Hypergeometric functions in model of General equilibrium of multisector economy with monopolistic competition
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 825-836

    We show that basic properties of some models of monopolistic competition are described using families of hypergeometric functions. The results obtained by building a general equilibrium model in a multisector economy producing a differentiated good in $n$ high-tech sectors in which single-product firms compete monopolistically using the same technology. Homogeneous (traditional) sector is characterized by perfect competition. Workers are motivated to find a job in high-tech sectors as wages are higher there. However, they are at risk to remain unemployed. Unemployment persists in equilibrium by labor market imperfections. Wages are set by firms in high-tech sectors as a result of negotiations with employees. It is assumed that individuals are homogeneous consumers with identical preferences that are given the separable utility function of general form. In the paper the conditions are found such that the general equilibrium in the model exists and is unique. The conditions are formulated in terms of the elasticity of substitution $\mathfrak{S}$ between varieties of the differentiated good which is averaged over all consumers. The equilibrium found is symmetrical with respect to the varieties of differentiated good. The equilibrium variables can be represented as implicit functions which properties are associated elasticity $\mathfrak{S}$ introduced by the authors. A complete analytical description of the equilibrium variables is possible for known special cases of the utility function of consumers, for example, in the case of degree functions, which are incorrect to describe the response of the economy to changes in the size of the markets. To simplify the implicit function, we introduce a utility function defined by two one-parameter families of hypergeometric functions. One of the families describes the pro-competitive, and the other — anti-competitive response of prices to an increase in the size of the economy. A parameter change of each of the families corresponds to all possible values of the elasticity $\mathfrak{S}$. In this sense, the hypergeometric function exhaust natural utility function. It is established that with the increase in the elasticity of substitution between the varieties of the differentiated good the difference between the high-tech and homogeneous sectors is erased. It is shown that in the case of large size of the economy in equilibrium individuals consume a small amount of each product as in the case of degree preferences. This fact allows to approximate the hypergeometric functions by the sum of degree functions in a neighborhood of the equilibrium values of the argument. Thus, the change of degree utility functions by hypergeometric ones approximated by the sum of two power functions, on the one hand, retains all the ability to configure parameters and, on the other hand, allows to describe the effects of change the size of the sectors of the economy.

    Просмотров за год: 10.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.