Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'formal automat':
Найдено статей: 4
  1. Коганов А.В.
    Тесты проверки параллельной организации логических вычислений, основанные на алгебре и автоматах
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 621-638

    Работа продолжает опубликованные ранее исследования по способности человека повышать производительность обработки информации при параллельном выполнении нескольких логических операций заданного вида. В статье предлагаются новые тесты, позволяющие выявлять указанную способность человеческого мозга в серии предъявлений. Производительность человека определяется средним количеством информации, которую обрабатывает человек в единицу времени, решая серию тестовых задач. Сложность задачи в каждой серии тестов определяется средним количеством логических операций, которые надо выполнить для решения с учетом статистических свойств серии задач. Тесты строятся таким образом, чтобы сложность контролировалась. Изучается зависимость производительности испытуемого от сложности задач в серии. Если человек использует последовательный алгоритм решения и не меняет скорости выполнения логических операций, то производительность не зависит от сложности и среднее время решения задачи в серии примерно пропорционально сложности. Если скорость выполнения операций растет с повышением сложности (растет концентрация внимания), то увеличивается и производительность. Тот же эффект возникает, если человек при достаточно высокой сложности задачи начинает выполнять несколько логических операций одновременно (параллельные вычисления). Для контроля причин роста производительности строятся контрольные тесты на том же классе логических операций, в которых параллельная организация счета малоэффективна. Если рост производительности наблюдается как на основных, так и на контрольных тестах, то причиной роста производительности является увеличение быстродействия. Если же на контрольных тестах нет роста производительности, а на основных тестах рост имеется, то причиной роста является параллельный счет. С точки зрения теории операций это означает использование одновременной работы нескольких процессоров, каждый из которых в единицу времени перерабатывает не более некоторого известного числа элементов входных данных или промежуточных результатов (производительность процессора). В данной статье предлагается система тестов, в которой используется аппарат универсальных алгебр и теории автоматов. Работа является продолжением цикла работ по исследованию способностей человека к параллельным вычислениям. Ранее использованные тесты в экспериментах показали эффективность методики. Основные предыдущие публикации на эту тему приведены в списке литературы. Задачи в новых предлагаемых тестах можно описать как вычисление результата серии последовательных однотипных операций из некоторой специальной алгебры. Если операция ассоциативная, то с помощью удачной группировки вычислений можно эффективно применить параллельный счет. Анализируется зависимость времени решения задачи от сложности. Чтобы выявлять ситуации, когда человек увеличивает быстродействие одного процессора по мере роста сложности, требуется предъявить серии задач с похожими операциями, но в неассоциативной алгебре. Для таких задач параллельный счет малоэффективен с точки зрения отношения прироста производительности к увеличению числа процессоров. Так формируется контрольная группа тестов. В статье рассмотрен еще один класс тестов, основанных на расчете траектории состояния заданного формального автомата при задании входной последовательности. Исследован специальный класс автоматов (реле), конструкция которых влияет на эффективность параллельного расчета финального состояния. Для всех тестов оценивается эффективность параллельного счета. Эксперименты с новыми тестами не входят в данную статью.

    We build new tests which permit to increase the human capacity for the information processing by the parallel execution of the several logic operations of prescribed type. For checking of the causes of the capacity increasing we develop the check tests on the same logic operations class in which the parallel organization of the calculations is low-effectively. We use the apparatus of the universal algebra and automat theory. This article is the extension of the cycle of the work, which investigates the human capacity for the parallel calculations. The general publications on this theme content in the references. The tasks in the described tests may to define in the form of the calculation of the result in the sequence of the same type operations from some algebra. If this operation is associative then the parallel calculation is effectively by successful grouping of process. In Theory of operations that is the using the simultaneous work several processors. Each processor transforms in the time unit the certain known number of the elements of the input date or the intermediate results (the processor productivity). Now it is not known what kind elements of date are using by the brain for the logical or mathematical calculation, and how many elements are treating in the time units. Therefore the test contains the sequence of the presentations of the tasks with different numbers of logical operations in the fixed alphabet. That is the measure of the complexity for the task. The analysis of the depending of the time for the task solution from the complexity gives the possible to estimate the processor productivity and the form of the calculate organization. For the sequence calculations only one processor is working, and the time of solution is a line function of complexity. If the new processors begin to work in parallel when the complexities of the task increase than the depending of the solution time from complexity is represented by the curve which is convex at the bottom. For the detection of situation when the man increases the speed of the single processor under the condition of the increasing complexity we use the task series with similar operations but in the no associate algebra. In such tasks the parallel calculation is little affectivity in the sense of the increasing efficiency by the increasing the number of processors. That is the check set of the tests. In article we consider still one class of the tests, which are based on the calculation of the trajectory of the formal automat state if the input sequence is determined. We investigate the special class of automats (relay) for which the construction affect on the affectivity of the parallel calculations of the final automat state. For all tests we estimate the affectivity of the parallel calculation. This article do not contained the experiment results.

    Просмотров за год: 14. Цитирований: 1 (РИНЦ).
  2. Пехтерев А.А., Домащенко Д.В., Гусева И.А.
    Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978

    Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.

    Pekhterev A.A., Domaschenko D.V., Guseva I.A.
    Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978

    The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.

  3. Мусаев А.А., Григорьев Д.А.
    Обзор современных технологий извлечения знаний из текстовых сообщений
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315

    Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.

    Musaev A.A., Grigoriev D.A.
    Extracting knowledge from text messages: overview and state-of-the-art
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315

    In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.

  4. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

    Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.