Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'dynamic instability':
Найдено статей: 15
  1. Гиричева Е.Е.
    Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199

    В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.

    В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.

    В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.

    Giricheva E.E.
    Analysis of taxis-driven instability of a predator–prey system through the plankton community model
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 185-199

    The paper deals with a prey-predator model, which describes the spatiotemporal dynamics of plankton community and the nutrients. The system is described by reaction-diffusion-advection equations in a onedimensional vertical column of water in the surface layer. Advective term of the predator equation represents the vertical movements of zooplankton with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This study aimed to determine the conditions under which these movements (taxis) lead to the spatially heterogeneous structures generated by the system. Assuming diffusion coefficients of all model components to be equal the instability of the system in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations is analyzed.

    Necessary conditions for the flow-induced instability were obtained through linear stability analysis. Depending on the local kinetics parameters, increasing the taxis rate leads to Turing or wave instability. This fact is in good agreement with conditions for the emergence of spatial and spatiotemporal patterns in a minimal phytoplankton–zooplankton model after flow-induced instabilities derived by other authors. This mechanism of generating patchiness is more general than the Turing mechanism, which depends on strong conditions on the diffusion coefficients.

    While the taxis exceeding a certain critical value, the wave number corresponding to the fastest growing mode remains unchanged. This value determines the type of spatial structure. In support of obtained results, the paper presents the spatiotemporal dynamics of the model components demonstrating Turing-type pattern and standing wave pattern.

  2. Коваленко И.Б., Древаль В.Д., Федоров В.А., Холина Е.Г., Гудимчук Н.Б.
    Описание изгибов протофиламентов микротрубочек
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 435-443

    Работа посвящена анализу конформационных изменений в димерах и тетрамерах тубулина, в частности оценке изгиба составленных из них протофиламентов. В работе рассмотрено три недавно использованных подхода для оценки изгиба тубулиновых протофиламентов: (1) измерение угла между вектором, проходящим через H7 спирали в $\alpha$- и $\beta$-мономерах тубулина в прямой структуре, и таким же вектором в изогнутой структуре тубулина; (2) измерение угла между вектором, соединяющим центры масс субъединицы и связанного с ней ГТФ- нуклеотида, и вектором, связывающим центры масс того же нуклеотида и соседней субъединицы тубулина; (3) измерение трех углов вращения субъединицы тубулина в изогнутой структуре димера тубулина относительно аналогичной субъединицы в прямой структуре димера тубулина. Приведены рассчитанные в соответствии с описанными тремя метриками количественные оценки углов на внутри- и междимерных интерфейсах тубулина в опубликованных кристаллических структурах. Внутридимерные углы тубулина в одной структуре, измеренные по методу (3), как и измерения этим методом внутридимерных углов в разных структурах, были более схожи, чем при использовании других методов, что говорит о меньшей чувствительности метода к локальным изменениям конформации тубулина, и характеризует метод в целом как более устойчивый. Измерения кривизны тубулина по углу между H7-спиралями дают несколько заниженную оценку удельной кривизны тубулина на димер, а метод (2), хотя на первый взгляд и дает цифры, также довольно хорошо совпадающие с оценками криоэлектронной микроскопии, существенно завышает углы даже на прямых структурах. Для структур тетрамеров тубулина в комплексе с белком статмином углы изгиба, рассчитанные по всем трем метрикам, различались для первого и второго димеров довольно существенно (до 20 % и больше), что говорит о чувствительности всех метрик к незначительным вариациям в конформации димеров тубулина внутри этих комплексов. Подробное описание процедур измерения изгибов тубулиновых протофиламентов, а также выявление преимуществ и недостатков различных метрик позволит увеличить воспроизводимость и четкость анализа структур тубулина в будущем, а также позволит облегчить сопоставление результатов, полученных различными научными группами.

    Kovalenko I.B., Dreval V.D., Fedorov V.A., Kholina E.G., Gudimchuk N.B.
    Microtubule protofilament bending characterization
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443

    This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.

  3. Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.

    Giricheva E.E.
    Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634

    The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.

  4. Федоров В.А., Холина Е.Г., Коваленко И.Б.
    Молекулярная динамика протофиламентов тубулина и влияние таксола на их изгибную деформацию
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 503-512

    Несмотря на широкое распространение и применение препаратов химиотерапии рака, остаются невыясненными молекулярные механизмы действия многих из них. Известно, что некоторые из этих препаратов, например таксол, оказывают влияние на динамику сборки микротрубочек и останавливают процесс клеточного деления в профазе-прометафазе. В последнее время появились новые пространственные структуры микротрубочек и отдельных олигомеров тубулина, связанных с различными регуляторными белками и препаратами химиотерапии рака. Однако знание пространственной структуры само по себе не дает информации о механизме действия препаратов.

    В работе был применен метод молекулярной динамики для исследования поведения связанных с таксолом олигомеров тубулина и использована разработанная нами ранее методика анализа конформационных изменений протофиламентов тубулина, основанная на вычислении модифицированных углов Эйлера. На новых структурах фрагментов микротрубочек было продемонстрировано, что протофиламенты тубулина изгибаются не в радиальном направлении, как предполагают многие исследователи, а под углом примерно 45 к радиальному направлению. Однако в присутствии таксола направление изгиба смещается ближе к радиальному направлению. Было выявлено отсутствие значимой разницы между средними значениями углов изгиба и скручивания на новых структурах тубулина при связывании с различными естественными регуляторными лигандами, гуанозинтрифосфатом и гуанозиндифосфатом. Было обнаружено, что угол изгиба внутри димера больше, чем угол междимерного изгиба во всех проанализированных траекториях. Это указывает на то, что основная доля энергии деформации запасается внутри димерных субъединиц тубулина, а не на междимерном интерфейсе. Анализ недавно опубликованных структур тубулина указал на то, что присутствие таксола в кармане бета-субъединицы тубулина аллостерически уменьшает жесткость олигомера тубулина на скручивание, что могло бы объяснить основной механизм воздействия таксола на динамику микротрубочек. Действительно, снижение крутильной жесткости дает возможность сохранить латеральные связи между протофиламентами, а значит, должно приводить к стабилизации микротрубочек, что и наблюдается в экспериментах. Результаты работы позволяют пролить свет на феномен динамической нестабильности микротрубочек и приблизиться к пониманию молекулярных механизмов клеточного деления.

    Fedorov V.A., Kholina E.G., Kovalenko I.B.
    Molecular dynamics of tubulin protofilaments and the effect of taxol on their bending deformation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 503-512

    Despite the widespread use of cancer chemotherapy drugs, the molecular mechanisms of action of many of them remain unclear. Some of these drugs, such as taxol, are known to affect the dynamics of microtubule assembly and stop the process of cell division in prophase-prometaphase. Recently, new spatial structures of microtubules and individual tubulin oligomers have emerged associated with various regulatory proteins and cancer chemotherapy drugs. However, knowledge of the spatial structure in itself does not provide information about the mechanism of action of drugs.

    In this work, we applied the molecular dynamics method to study the behavior of taxol-bound tubulin oligomers and used our previously developed method for analyzing the conformation of tubulin protofilaments, based on the calculation of modified Euler angles. Recent structures of microtubule fragments have demonstrated that tubulin protofilaments bend not in the radial direction, as many researchers assume, but at an angle of approximately 45◦ from the radial direction. However, in the presence of taxol, the bending direction shifts closer to the radial direction. There was no significant difference between the mean bending and torsion angles of the studied tubulin structures when bound to the various natural regulatory ligands, guanosine triphosphate and guanosine diphosphate. The intra-dimer bending angle was found to be greater than the interdimer bending angle in all analyzed trajectories. This indicates that the bulk of the deformation energy is stored within the dimeric tubulin subunits and not between them. Analysis of the structures of the latest generation of tubulins indicated that the presence of taxol in the tubulin beta subunit pocket allosterically reduces the torsional rigidity of the tubulin oligomer, which could explain the underlying mechanism of taxol’s effect on microtubule dynamics. Indeed, a decrease in torsional rigidity makes it possible to maintain lateral connections between protofilaments, and therefore should lead to the stabilization of microtubules, which is what is observed in experiments. The results of the work shed light on the phenomenon of dynamic instability of microtubules and allow to come closer to understanding the molecular mechanisms of cell division.

  5. Варшавский Л.Е.
    Приближенные методы исследования динамики показателей рыночной структуры
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 219-229

    В статье предлагается подход к расчету разомкнутых оптимальных по Нэшу–Курно стратегий компаний, выходящих на рынок с новой прогрессивной техникой, который основан на использовании Z-преобразования. Предлагаемый подход позволяет получить экономически допустимые оптимальные игровые стратегии даже в тех случаях, когда решения обобщенных уравнений Риккати приводят к неустойчивости показателей олигополистических рынков.

    Varshavsky L.E.
    Approximate methods of studying dynamics of market structure
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 219-229

    An approach to computation of open-loop optimal Nash–Cournot strategies in dynamical games which is based on the Z-transform method and factorization is proposed. The main advantage of the proposed approach is that it permits to overcome the problems of instability of economic indicators of oligopolies arising when generalized Riccati equations are used.

    Просмотров за год: 3. Цитирований: 9 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.